1. 难度:中等 | |
已知![]() A.3+i B.3-i C.-3-i D.-3+i |
2. 难度:中等 | |
己知集合A={l,2,3),集合B=(2,3,4),则A∩(CNB)=( ) A.{l} B.{0,1} C.{1,2,3} D.{2,3,4} |
3. 难度:中等 | |
己知命题p:“a>b”是“2a>2b”的充要条件;q:∃x∈R,|x+l|≤x,则( ) A.¬p∨q为真命题 B.p∨q为真命题 C.p∧q为真命题 D.p∧¬q为假命题 |
4. 难度:中等 | |
已知α是第三象限的角,且tanα=2,则sin(α+![]() A. ![]() B. ![]() C. ![]() D. ![]() |
5. 难度:中等 | |
设变量x、y满足![]() A. ![]() B.2 C.4 D.6 |
6. 难度:中等 | |
把函数y=sin(2x-![]() ![]() A.x=0 B.x= ![]() C.x= ![]() D.x=- ![]() |
7. 难度:中等 | |
执行如图所示的算法,若输出的结果y≥2,则输入的x满足( )![]() A.x≥4 B.x≤-l C.-1≤x≤4 D.x≤一l或x≥4 |
8. 难度:中等 | |
![]() A.1 B. ![]() C. ![]() D.2 |
9. 难度:中等 | |
曲线y=![]() A.1 B.- ![]() C. ![]() D. ![]() |
10. 难度:中等 | |
奇函数f(x)、偶函数g(x)的图象分别如图1、2所示,方程f(g(x))=0、g(f(x))=0的实根个数分别为a、b,则a+b=( )![]() A.14 B.10 C.7 D.3 |
11. 难度:中等 | |
直线l与双曲线C:![]() A.2 B. ![]() C.3 D. ![]() |
12. 难度:中等 | |
把一个皮球放入如图所示的由8根长均为20cm的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径( )![]() A.l0 ![]() B.10cm C.10 ![]() D.30cm |
13. 难度:中等 | |
函数y=![]() |
14. 难度:中等 | |
向圆(x一2)2+(y-![]() |
15. 难度:中等 | |
过抛物线y2=2px(p>0)的焦点F作直线交抛物线于A、B两点,若|AF|=2|BF|=6,则p= . |
16. 难度:中等 | |
在△ABC中,三边对应的向量满足(![]() ![]() |
17. 难度:中等 | |
已知数列{an}满足:![]() (I)求数列{an}的通项公式; (II)设 ![]() ![]() |
18. 难度:中等 | |
某篮球队甲、乙两名队员在本赛季已结束的8场比赛中得分统计的茎叶图如下: (I)比较这两名队员在比赛中得分的均值和方差的大小: (II)从乙比赛得分在20分以下的6场比赛中随机抽取2场进行失误分析,求抽到恰好有1场得分不足10分的概率. ![]() |
19. 难度:中等 | |
如图,在四棱锥P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点. (I)求证:平面EAC⊥平面PBC; ( II)若PC= ![]() ![]() |
20. 难度:中等 | |
在直角坐标系xOy中,长为![]() ![]() (I)求曲线E的方程; (II)经过点(0,1)作直线l与曲线E相交于A、B两点, ![]() |
21. 难度:中等 | |
已知![]() (I)求函数f(x)的最小值; ( II)当x>2a,证明: ![]() |
22. 难度:中等 | |
选修4-1:几何证明选讲 如图,在△ABC中,BC边上的点D满足BD=2DC,以BD为直径作圆O恰与CA相切于点A,过点B作BE⊥CA于点E,BE交圆D于点F. (I)求∠ABC的度数: ( II)求证:BD=4EF. ![]() |
23. 难度:中等 | |
选修4-4:坐标系与参数方程 极坐标系的极点为直角坐标系xOy的原点,极轴为z轴的正半轴,两种坐标系的长度单位相同,己知圆C1的极坐标方程为p=4(cosθ+sinθ,P是C1上一动点,点Q在射线OP上且满足OQ= ![]() (I)求曲线C2的极坐标方程,并化为直角坐标方程; ( II)已知直线l的参数方程为 ![]() |
24. 难度:中等 | |
选修4-5:不等式选讲 设f(x)=|x|+2|x-a|(a>0). (I)当a=l时,解不等式f(x)≤4; (Ⅱ)若f(x)≥4恒成立,求实数a的取值范围. |