函数
![]() A.(-1,1) B.(-1,+∞) C.x|x>0或x<-2 D.x|x>1或x<-1 已知a,b都是实数,那么“a2>b2”是“a>b”的( )
A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 命题“存在x∈R,2x≤0”的否定是( )
A.不存在x∈R, ![]() B.存在x∈R, ![]() C.对任意的x∈R,2x≤0 D.对任意的x∈R,2x>0 设全集U=R,A={x|x<-3或x≥2},B={x|-1<x<5},则集合{x|-1<x<2|是( )
A.(∁UA)∪(∁UB) B.∁U(A∪B) C.(∁UA)∩B D.A∩B 某人玩硬币走跳棋的游戏,已知硬币出现正、反面的概率都是
![]() (1)求P,Pl,P2; (2)写出Pn与Pn-1,pn-2的递推关系; (3)求证:玩该游戏获胜的概率小于 ![]() ![]() ![]() (1)求证AM∥平面BDE; (2)求二面角A-DF-B的大小; (3)试在线段AC上一点P,使得PF与CD所成的角是60°. 为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
![]() ![]() ![]() (I)求他们选择的项目所属类别互不相同的概率; (II)记X为3人中选择的项目属于基础设施工程的人数,求X的分布列及数学期望. 如图,正方形A1BA2C的边长为4,D是A1B的中点,E是BA2上的点,将△A1DC及△A2EC分别沿DC和EC折起,使A1、A2重合于A,且二面角A-DC-E为直二面角.
![]() (1)求证:CD⊥DE; (2)求AE与面DEC所成的角. 如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(1)求证:平面PBD⊥平面PAC; (2)求点A到平面PBD的距离; (3)求二面角B-PC-A的大小. ![]() 某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人.现采用分层抽样(层内采用不放回简单随即抽样)从甲、乙两组中共抽取4名工人进行技术考核.
(1)求从甲、乙两组各抽取的人数; (2)求从甲组抽取的工人中恰有1名女工人的概率; (3)求抽取的4名工人中恰有2名男工人的概率. 将边长为2,锐角为60°的菱形ABCD沿较短对角线BD折成二面角A-BD-C,点E,F分别为AC,BD的中点,给出下列四个命题:
①EF∥AB;②直线EF是异面直线AC与BD的公垂线;③当二面角A-BD-C是直二面角时,AC与BD间的距离为 ![]() 其中正确的是 (将正确命题的序号全填上). 在某项测量中,测量的结果ξ 服从正态分布N(a,σ2)(a>0,σ>0),若ξ 在(0,a)内取值的概率为0.3,则ξ 在(0,2a)内取值的概率为 .
设向量
![]() ![]() ![]() 某保险公司新开设了一项保险业务,若在一年内事件E发生,该公司要赔偿a元.设在一年内E发生的概率为p,为使公司收益的期望值等于a的百分之十,公司应要求顾客交保险金为 .
如图,正方体ABCD-A1B1C1D中,P为平面A1ABB1内一动点,且点P到A1A和BC的距离相等,则P点的轨迹是下图中的( )
![]() A. ![]() B. ![]() C. ![]() D. ![]() 已知二面角α-l-β为60°,动点P、Q分别在面α、β内,P到β的距离为
![]() ![]() ![]() A.1 B.2 C. ![]() D.4 如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为
![]() ![]() ![]() A.4 B.6 C.8 D.9 设直线l⊂平面α,过平面α外一点A与l,α都成30°角的直线有且只有( )
A.1条 B.2条 C.3条 D.4条 由1、2、3、4、5、6组成没有重复数字的六位偶数中,若5只与偶数数字相邻,称这个数为“吉祥数”,则出现“吉祥数”的概率是( )
A. ![]() B. ![]() C. ![]() D. ![]() 为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg),得到频率分布直方图如图.根据图可得这100名学生中体重在〔56.5,64.5〕的学生人数是( )
![]() A.20 B.30 C.40 D.50 如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )
A.48 B.18 C.24 D.36 已知两个不同的平面α,β和两条不重合的直线m,n,下列四个命题:
①若m∥n,m⊥α,则n⊥α; ②若m⊥α,m⊥β,则α∥β; ③若m⊥α,m∥n,n⊂β,则α⊥β; ④若m∥α,α∩β=n,则m∥n. 其中正确命题的个数是( ) A.0个 B.1个 C.2个 D.3个 某家庭电话在家里有人时,打进电话响第一声被接的概率为0.1,响第二声时被接的概率为0.3,响第三声时被接的概率为0.4,响第四声时被接的概率为0.1,那么电话在响前4声内被接的概率是( )
A.0.622 B.0.9 C.0.6598 D.0.0028 已知如图,空间四边形OABC,其对角线为OB、AC,M、N分别是对边OA、BC的中点,点G在线段MN上,且使MG=2GN,
![]() ![]() ![]() ![]() ![]() A. ![]() B. ![]() C.1 D. ![]() 老师为研究男女同学数学学习的差异情况,对全班50名同学(其中男同学30名,女同学20名),采用分层抽样的方法抽取一个样本容量为10的样本进行研究,某女同学甲被抽取的概率为( )
A. ![]() B. ![]() C. ![]() D. ![]() 在空间中,“两条直线没有公共点”是“这两条直线平行”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 如图,设圆(x-5)2+y2=16的圆心为C,此圆和抛物线y2=px(p>0)有四个交点,若在x轴上方的两个交点为A(x1,
![]() ![]() (1)求p的取值范围; (2)求S关于p的函数f(p)的表达式及S的最大值; (3)求当S取最大值时,向量 ![]() ![]() ![]() 把正偶数数列{2n}中的数按上小下大、左小右大的原则排成如下三角形数表:
设aij(i,j∈N*)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数. (1)若amn=2008(已知45×46=2070,44×45=1980),求m,n的值; (2)若记三角形数表中从上往下数第n行各数的和为bn,已知 ![]() ![]() 已知ABCD为直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=1,BC=2,E为PC的中点,PA⊥平面ABCD,建立如图所示的空间直角坐标系.
(1)写出点E的坐标; (2)能否在BC上找到一点F,使EF⊥CD?若能,请求出点F的位置,若不能,请说明理由; (3)求证:平面PCB⊥平面PCD. ![]() 在△ABC中,a,b,c分别是∠A,∠B,∠C的对边长,已知a,b,c成等比数列,且a2-c2=ac-bc,
(1)求∠A的大小; (2)若b=2,求△ABC的面积的大小.(附:关于x的方程 ![]() |