已知数列{an}是一个等差数列,且a2=1,a5=-5.
(I)求{an}的通项an
(II)设manfen5.com 满分网manfen5.com 满分网,求T=log2b1+log2b2+log2b3+…+log2bn的值.
已知a=2(cosωx,cosωx),b=(cosωx,manfen5.com 满分网sinωx)(其中0<ω<1),函数f(x)=a•b,若直线x=manfen5.com 满分网是函数f(x)图象的一条对称轴,
(1)试求ω的值;
(2)先列表再作出函数f(x)在区间[-π,π]上的图象.

manfen5.com 满分网
选修4-5:不等式选讲.
设函数f(x)=2|x-1|+|x+2|.
(Ⅰ)求不等式f(x)≥4的解集;
(Ⅱ)若不等式f(x)<|m-2|的解集是非空的集合,求实数m的取值范围.
给出下列四个命题:
①已知a,b,m都是正数,且manfen5.com 满分网,则a<b;
②若函数f(x)=lg(ax+1)的定义域是{x|x<1},则a<-1;
③已知x∈(0,π),则y=sinx+manfen5.com 满分网的最小值为manfen5.com 满分网
④已知a、b、c成等比数列,a、x、b成等差数列,b、y、c也成等差数列,则manfen5.com 满分网的值等于2.其中正确命题的序号是   
设动直线x=a与函数f(x)=2sin2manfen5.com 满分网)和g(x)=manfen5.com 满分网的图象分别交于M、N两点,则|MN|的最大值为   
已知定点P(2,1),分别在y=x及x轴上各取一点B与C,使△BPC的周长最小,则周长的最小值为   
椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为   
已知函数f(x)=manfen5.com 满分网 若f(2-x2)>f(x),则实数x的取值范围是( )
A.(-∞,-1)∪(2,+∞)
B.(-∞,-2)∪(1,+∞)
C.(-1,2)
D.(-2,1)
设方程2-x=|lgx|的两个根为x1x2,则下列关系正确的是( )
A.0<x1x2<1
B.x1x2=1
C.x1x2>1
D.x1x2<0
在△ABC中,tanA是第3项为-4,第7项为4的等差数列的公差,tanB是第3项为manfen5.com 满分网,第6项为9的等比数列的公比,则△ABC是( )
A.等腰三角形
B.锐角三角形
C.直角三角形
D.钝角三角形
过双曲线manfen5.com 满分网(a>0,b>0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.2
D.manfen5.com 满分网
已知manfen5.com 满分网(其中m,n为正数),若manfen5.com 满分网,则manfen5.com 满分网的最小值是( )
A.2
B.manfen5.com 满分网
C.4
D.8
直线ax+by+b-a=0与圆x2+y2-x-2=0的位置关系是( )
A.相交
B.相离
C.相切
D.与a、b的取值有关
等比数列{an}的前n项和为manfen5.com 满分网,则实数a的值是( )
A.-3
B.3
C.-1
D.1
设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
等差数列{an}中,a3+a5+a7+a9+a11=20,则manfen5.com 满分网=( )
A.1
B.2
C.3
D.4
manfen5.com 满分网,则manfen5.com 满分网的值是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
已知椭圆的中心在原点,离心率manfen5.com 满分网,且它的一个焦点与抛物线y2=-4x的焦点重合,则此椭圆方程为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
已知集合A={x|ax-1=0},B={x|1<log2x≤2,x∈N},且A∩B=A,则a的所有可能值组成的集合是( )
A.Φ
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
(选做题)已知函数f(x)=|2x-1|+2,g(x)=-|x+2|+3.
(Ⅰ)解不等式:g(x)≥-2;
(Ⅱ)当x∈R时,f(x)-g(x)≥m+2恒成立,求实数m的取值范围.
在平面直角坐标系xOy中,已知曲线C1:x2+y2=1,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ-sinθ)=6.
(1)将曲线C1上的所有点的横坐标、纵坐标分别伸长为原来的manfen5.com 满分网、2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程;
(2)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.
manfen5.com 满分网如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED=manfen5.com 满分网,⊙O的半径为3,求OA的长.
已知函数f(x)=lnx,g(x)=ex
( I)若函数φ(x)=f(x)-manfen5.com 满分网,求函数φ(x)的单调区间;
(Ⅱ)设直线l为函数的图象上一点A(x,f (x))处的切线.证明:在区间(1,+∞)上存在唯一的x,使得直线l与曲线y=g(x)相切.
已知:圆x2+y2=1过椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的两焦点,与椭圆有且仅有两个公共点:直线y=kx+m与圆x2+y2=1相切,与椭圆manfen5.com 满分网+manfen5.com 满分网=1相交于A,B两点记λ=manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网≤λ≤manfen5.com 满分网
(1)求椭圆的方程;
(2)求k的取值范围.
如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.
(1)求证:DE⊥BE;
(2)求四棱锥E-ABCD的体积;
(3)设点M在线段AB上,且AM=MB,试在线段CE上确定一点N,使得MN∥平面DAE.

manfen5.com 满分网
manfen5.com 满分网某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费每满100元可以转动如图所示的圆盘一次,其中O为圆心,且标有20元、10元、0元的三部分区域面积相等.假定指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券.(例如:某顾客消费了218元,第一次转动获得了20元,第二次获得了10元,则其共获得了30元优惠券.)顾客甲和乙都到商场进行了消费,并按照规则参与了活动.
(I)若顾客甲消费了128元,求他获得优惠券面额大于0元的概率?
(II)若顾客乙消费了280元,求他总共获得优惠券金额不低于20元的概率?
在△ABC中,a,b,c分别为角A,B,C的对边,且满足4cos2manfen5.com 满分网-cos2(B+C)=manfen5.com 满分网
(Ⅰ)求角A的大小;
(Ⅱ)若b+c=3,求a的最小值.
在平面直角坐标系xOy中,过定点C(0,1)作直线与抛物线x2=2y相交于A,B两   点.若点N是点C关于坐标原点O的对称点,则△ANB面积的最小值为   
已知点A(a,b)与点B(1,0)在直线3x-4y+10=0的两侧,给出下列说法:
①3a-4b+10>0;
②当a>0时,a+b有最小值,无最大值;
manfen5.com 满分网>2;
④当a>0且a≠1,b>0时,manfen5.com 满分网的取值范围为(-∞,-manfen5.com 满分网)∪(manfen5.com 满分网,+∞).
其中,所有正确说法的序号是   
设函数f(x)=manfen5.com 满分网,若f(x)>1,则x的取值范围是   
Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.