设l,m是两条不同的直线,α,β是两个不同的平面,给出下列四个命题:
①若m⊥α,l⊥m,则l∥α;        
②若α⊥β,α∩β=l,m⊥l,则m⊥β;
③若α∥β,l⊥α,m∥β,则l⊥m; 
④若α∥β,l∥α,m⊂β,则l∥m.
其中正确命题的个数是( )
A.1
B.2
C.3
D.4
设α是第二象限角,P(x,4)为其终边上的一点,且manfen5.com 满分网,则tanα=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁UA)∪B为( )
A.{1,2,4}
B.{2,3,4}
C.{0,2,4}
D.{0,2,3,4}
已知i是虚数单位,则manfen5.com 满分网=( )
A.1-2i
B.2-i
C.2+i
D.1+2i
已知函数f(x)=x2,g(x)=alnx,a∈R.
(1)若∃x≥1,f(x)<g(x),求实数a的取值范围;
(2)证明:“方程f(x)-g(x)=ax(a>0)有唯一解”的充要条件是“a=1”.
已知整数列{an}满足a3=-1,a7=4,前6项依次成等差数列,从第5项起依次成等比数列.
(1)求数列{an}的通项公式;
(2)求出所有的正整数m,使得am+am+1+am+2=amam+1am+2
在平面直角坐标系xOy中,已知圆C1:(x-1)2+y2=16,圆C2:(x+1)2+y2=1,点S为圆C1上的一个动点,现将坐标平面折叠,使得圆心C2(-1,0)恰与点S重合,折痕与直线SC1交于点P.
(1)求动点P的轨迹方程;
(2)过动点S作圆C2的两条切线,切点分别为M、N,求MN的最小值;
(3)设过圆心C2(-1,0)的直线交圆C1于点A、B,以点A、B分别为切点的两条切线交于点Q,求证:点Q在定直线上.
如图,点P在△ABC内,AB=CP=2,BC=3,∠P+∠B=π,记∠B=α.
(1)试用α表示AP的长;
(2)求四边形ABCP的面积的最大值,并写出此时α的值.

manfen5.com 满分网
如图,在四面体ABCD中,AB=AC=DB=DC,点E是BC的中点,点F在线段AC上,且manfen5.com 满分网
(1)若EF∥平面ABD,求实数λ的值;
(2)求证:平面BCD⊥平面AED.

manfen5.com 满分网
已知sinα+sinβ=1,cosα+cosβ=manfen5.com 满分网
(1)求cos(α-β)的值;
(2)求cos(α+β)的值.
定义在[1,+∞)上的函数f(x)满足:①f(2x)=2f(x);②当x∈[2,4]时,f(x)=1-|x-3|,则集合{x|f(x)=f(36)}中的最小元素是   
定义:min{x,y}为实数x,y中较小的数.已知manfen5.com 满分网,其中a,b 均为正实数,则h的最大值是   
已知平面向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网满足|manfen5.com 满分网|=1,|manfen5.com 满分网|=2,manfen5.com 满分网manfen5.com 满分网的夹角等于manfen5.com 满分网,且(manfen5.com 满分网-manfen5.com 满分网)•(manfen5.com 满分网-manfen5.com 满分网)=0,则|manfen5.com 满分网|的取值范围是   
已知正四棱锥的侧棱长为1,则其体积的最大值为   
已知y=f(x)是R上的奇函数,且x>0时,f(x)=1,则不等式f(x2-x)<f(0)的解集为   
在△ABC中,若tanA:tanB:tanC=1:2:3,则A=   
已知双曲线manfen5.com 满分网(a>0,b>0)的两个焦点为manfen5.com 满分网manfen5.com 满分网,点P是第一象限内双曲线上的点,且manfen5.com 满分网,tan∠PF2F1=-2,则双曲线的离心率为   
运行如图所示的流程图,则输出的结果S是   
manfen5.com 满分网
在平面直角坐标系xOy中,“直线y=x+b,b∈R与曲线manfen5.com 满分网相切”的充要条件是   
要得到函数y=sin2x的函数图象,可将函数manfen5.com 满分网的图象向右至少平移    个单位.
已知函数manfen5.com 满分网在x=1处的导数为-2,则实数a的值是   
在区间[-1,2]内随机选取一个实数,则该数为正数的概率是   
manfen5.com 满分网(其中manfen5.com 满分网表示复数z的共轭复数),则复数z的模为   
已知集合U={1,3,5,9},A={1,3,9},B={1,9},则CU(A∪B)=   
在三棱锥P-ABC中,△PAC和△PBC是边长为manfen5.com 满分网的等边三角形,AB=2,O是AB中点.
(1)求三棱锥P-ABC的外接球的表面积;
(2)求证:平面PAB⊥平面ABC;
(3)求三棱锥P-ABC的体积.

manfen5.com 满分网
从某学校高三年级800名学生中随机抽取50名测量身高,据测量被抽取的学生的身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160).第二组[160,165);…第八组[190,195],图是按上述分组方法得到的条形图.

manfen5.com 满分网
(1)根据已知条件填写下面表格:
组 别12345678
样本数
(2)估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数;
(3)在样本中,若第二组有1人为男生,其余为女生,第七组有1人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为一男一女的概率是多少?
如图所示,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.
(1)求异面直线A1M和C1D1所成的角的正切值;
(2)求BM与平面A1B1M所成的角大小.

manfen5.com 满分网
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.
如图,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,AB∥DC,DC=DD1=2AD=2AB=2.
(1)求证:DB⊥平面B1BCC1
(2)设E是DC上一点,试确定E的位置,使得D1E∥平面A1BD,并说明理由.

manfen5.com 满分网
△ABC的三边长分别为3、4、5,P为面ABC外一点,它到△ABC三边的距离都等于2,则P到面ABC的距离是   
Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.