为了了解某校高中学生的近视眼发病率,在该校学生中进行分层抽样调查,已知该校高一、高二、高三分别有学生800名、600名、500名,若高三学生共抽取25名,则高一年级每一位学生被抽到的概率是   
已知f(x)=x2,g(x)=(manfen5.com 满分网x-m.若对任意x1∈[-1,3],总存在x2∈[0,2],使得f(x1)≥g(x2)成立,则实数m的取值范围是( )
A.[manfen5.com 满分网,+∞)
B.[manfen5.com 满分网,+∞)
C.[-8,+∞)
D.[1,+∞)
已知双曲线M:manfen5.com 满分网和双曲线N:manfen5.com 满分网,其中b>a>0,且双曲线M与N的交点在两坐标轴上的射影恰好是两双曲线的焦点,则双曲线M的离心率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
设∠POQ=60°在OP、OQ上分别有动点A,B,若manfen5.com 满分网=6,△OAB的重心是G,则|manfen5.com 满分网|的最小值是( )
A.1
B.2
C.3
D.4
各项都是正数的等比数列{an}的公比q≠1,且a2manfen5.com 满分网,a1成等差数列,则manfen5.com 满分网的值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网manfen5.com 满分网
已知A,B,C,D,E是函数y=sin(ωx+ϕ)(ω>0,0<ϕ<manfen5.com 满分网一个周期内的图象上的五个点,如图所示,manfen5.com 满分网,B为y轴上的点,C为图象上的最低点,E为该函数图象的一个对称中心,B与D关于点E对称,manfen5.com 满分网在x轴上的投影为manfen5.com 满分网,则ω,ϕ的值为( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
从一个棱长为1的正方体中切去一部分,得到一个几何体,其三视图如图,则该几何体的体积为( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
如图框图,当x1=6,x2=9,p=8.5时,x3等于( )
manfen5.com 满分网
A.7
B.8
C.10
D.11
定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-5,-4]上是减函数,若A、B是锐角三角形的两个内角,则( )
A.f(sinA)>f(sinB)
B.f(cosA)<f(cosB)
C.f(sinB)<f(cosA)
D.f(sinA)>f(cosB)
已知正方形的四个顶点分别为O(0,0),A(2,0),B(2,2),C(0,2),直线y=1-2x与x轴、y轴围成的区域为M.在正方形OABC内任取一点P,则点P恰好在区域M内的概率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
设原命题:若a+b≥2,则a,b 中至少有一个不小于1.则原命题与其逆命题的真假情况是( )
A.原命题真,逆命题假
B.原命题假,逆命题真
C.原命题与逆命题均为真命题
D.原命题与逆命题均为假命题
已知i为虚数单位,复数manfen5.com 满分网,则复数z的虚部是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
若集合manfen5.com 满分网,则M∩N=( )
A.{x|1<x<2}
B.{x|1<x<3}
C.{x|0<x<3}
D.{x|0<x<2}
设圆C1:x2+y2-10x-6y+32=0,动圆C2:x2+y2-2ax-2(8-a)y+4a+12=0,
(Ⅰ)求证:圆C1、圆C2相交于两个定点;
(Ⅱ)设点P是椭圆manfen5.com 满分网上的点,过点P作圆C1的一条切线,切点为T1,过点P作圆C2的一条切线,切点为T2,问:是否存在点P,使无穷多个圆C2,满足PT1=PT2?如果存在,求出所有这样的点P;如果不存在,说明理由.
manfen5.com 满分网设椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆C与x轴正半轴于点P、Q,且manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网
(1)求椭圆C的离心率;
(2)若过A、Q、F三点的圆恰好与直线l:x+manfen5.com 满分网y+3=0相切,求椭圆C的方程.
如图,ABCD为直角梯形,∠C=∠CDA=90°,AD=2BC=2CD,P为平面ABCD外一点,且PB⊥BD.
(1)求证:PA⊥BD;
(2)若PC与CD不垂直,求证:PA≠PD;
(3)若直线l过点P,且直线l∥直线BC,试在直线l上找一点E,使得直线PC∥平面EBD.

manfen5.com 满分网
在平面直角坐标系xOy中,已知圆心在第二象限,半径为2manfen5.com 满分网的圆C与直线y=x相切于坐标原点O.椭圆manfen5.com 满分网=1与圆C的一个交点到椭圆两点的距离之和为10.
(1)求圆C的方程;
(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.
已知圆心为C的圆经过三个点O(0,0)、A(1,3)、B(4,0)
(1)求圆C的方程;
(2)求过点P(3,6)且被圆C截得弦长为4的直线的方程.
如图在四棱锥P-ABCD中,侧棱PD⊥平面ABCD,M,N分别是AB,PC的中点,底面ABCD是菱形,
(1)求证:MN∥平面PAD;
(2)求证:平面PAC⊥平面PBD.

manfen5.com 满分网
四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面,AB=a,BC=m,若在线段BC上存在点E满足PE⊥ED,则a的取值范围是   
在棱长为a的正方体骨架内放置一气球,使其充气且尽可能地膨胀(仍保持为球的形状),则气球表面积的最大值为   
已知圆C与直线x-y-1=0及直线x-y-7=0都相切,且圆心在直线x+y=0上,则圆c的标准方程为   
已知椭圆短轴上的两个顶点与两个焦点构成一个正方形,则椭圆的离心率为   
若直线y=x+b与曲线x=manfen5.com 满分网有两个公共点,则实数b的取值范围为   
下列四个条件:
①x,y,z均为直线;               
②x,y是直线,z是平面;
③x是直线y,z是平面;           
④z,x,y均为平面.
其中,能使命题“x⊥y,y∥z⇒x⊥z”成立的有   
中心在原点,长轴长为8,准线方程为x=±8的椭圆标准方程为   
若方程x2+y2+4kx-2y+4k2-k=0表示圆,则实数k的取值范围为   
已知圆Mx2+y2=4,圆N:(x-1)2+(y-1)2=r2,当两圆相切时,r=   
若点P(2,-1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程是    
过点P(2,1)能作    条直线与圆x2+y2-8x-2y-13=0相切.
Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.