下列命题是假命题的是( )
A.命题“若x≠1,则x2-3x+2≠0”的逆否命题是“若x2-3x+2=0,则x=1” B.若命题p:∀x∈R,x2+x+1≠0,则¬p:∃x∈R,x2+x+1=0 C.若p∨q为真命题,则p,q均为真命题 D.“x>2”是“x2-3x+2>0”的充分不必要条件 设变量x,y满足约束条件:
![]() A.6 B.7 C.8 D.23 函数
![]() A. ![]() B. ![]() C. ![]() D. ![]() 函数
![]() A.(1,2) B.(e,3) C.(2,e) D.(e,+∞) 函数
![]() A.右移 ![]() B.左移 ![]() ![]() C.每点的纵坐标不变,横坐标变为原来的 ![]() ![]() D.左移 ![]() ![]() 已知等比数列{an} 的公比q为正数,且2a3+a4=a5,则q的值为( )
A. ![]() B.2 C. ![]() D.3 已知向量
![]() ![]() ![]() ![]() A.-2 B.0 C.1 D.2 已知p:(a-1)2≤1;q:∀x∈R,ax2-ax+1≥0则p是q成立的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 若复数z=(a2+2a-3)+(a+3)i为纯虚数(i为虚数单位),则实数a的值是( )
A.-3 B.-3或1 C.3或-1 D.1 已知P={-1,0,
![]() A.Φ B.{0} C.{-1,0} D.{-1,0, ![]() 已知函数f(x)=[ax2-(3+2a)x+a]•ex+1,a≠0.
(1)若x=-1是函数f(x)的极大值点,求a的取值范围. (2)若不等式f′(x)>(x2+x-a)•ex+1对任意a∈(0,+∞)都成立,求实数x的取值范围. (3)记函数g(x)=f(x)+(2a+6)•ex+1,若g(x)在区间[2,4]上不单调,求实数a的取值范围. 已知函数
![]() (1)先列表再作出函数f(x)在区间[-π,π]上的图象. (2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围. (3)若 ![]() ![]() ![]() 如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M为线段AB的中点.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.
(Ⅰ)求证:BC⊥平面ACD; (Ⅱ)求二面角A-CD-M的余弦值. ![]() 已知数列{an}的前n项和为Sn,且
![]() (1)求证:数列{1+an}是等比数列,并求数列{an}的通项公式an; (2)设 ![]() ![]() 已知
![]() (1)求 ![]() (2)若 ![]() ![]() (3)若 ![]() ![]() 已知f(x)定义在(0,+∞)上的非负可导函数,且满足xf′(x)-f(x)≥0,对于任意的正数a,b,若a<b,
①af(b)≤bf(a) ②af(b)≥bf(a) ③af(a)≤bf(b) ④af(a)≥bf(b) 其中正确的是 . 等比数列{an}中,a1=1,a2010=4,函数f(x)=x(x-a1)(x-a2)…(x-a2010),则函数f(x) 在点(0,0)处的切线方程为 .
在边长为1的正三角形ABC中,
![]() ![]() 满足不等式x2-(a+1)x+a<0的所有整数解之和为27,则实数a的取值范围是 .
设Sn为等比数列{an} 的前n项和,已知3S3=a4-2,3S2=a3-2,则公比q= .
函数f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和为a,则a的值为 .
一个五面体的三视图如下,正视图与侧视图是等腰直角三角形,俯视图为直角梯形,部分边长如图所示,则此五面体的体积为
![]() ![]() ![]() 定义在R上的奇函数f(x),当x≥0时,
![]() A.2a-1 B.2-a-1 C.1-2-a D.1-2a 已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是( )
A.3 B.4 C. ![]() D. ![]() 已知偶函数y=f(x)对任意实数x都有f(x+1)=-f(x),且在[0,1]上单调递减,则( )
A. ![]() ![]() ![]() B. ![]() ![]() ![]() C. ![]() ![]() ![]() D. ![]() ![]() ![]() 已知变量x,y满足约束条件
![]() A.(3,5) B. ![]() C.(-1,2) D. ![]() 定义平面向量之间的一种运算“*”如下:对任意的
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() A.(1)(2)(3) B.(2)(3)(4) C.(1)(3)(4) D.(1)(2)(4) 若将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”下列四个命题,其中是“可换命题”的是( )
①垂直于同一平面的两直线平行; ②垂直于同一平面的两平面平行; ③平行于同一直线的两直线平行; ④平行于同一平面的两直线平行. A.①② B.①④ C.①③ D.③④ 已知
![]() ![]() ![]() ![]() A. ![]() B. ![]() C. ![]() D. ![]() 在由正数组成的等比数列{an}中,a1+a2=1,a3+a4=4,则a4+a5=( )
A.6 B.8 C.10 D.12 |