如图,动点
已知三棱柱 A.
将一颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是 A
(文)某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为 A.30 B.25 C.20 D.15 (理)设随机变量 A.1 B.2 C.3 D.4
用 A、 C、
A、
正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成角为 A.75°
三棱锥 A、外心 B、内心 C、垂心 D、重心
地球半径为R,北纬45º圈上有A、B两地,它们的经度相差90º,则A、B两地间的球面距离为( ) A.
设
5人站成一排,甲必须站排头或排尾的不同站法有 A.12种 B.24种 C.48种 D.60种
A.40200 B.39800 C.20100 D.19900
从曲线 (1)若 (2)若对于任意的正整数 (3)在(1)的条件下,记
已知圆 (1)求圆Q的方程; (2)是否存在一条过点
棱 (1)求 (2)求异面直线 (3)求证:
已知 (1)若 (2)若
一个口袋内装有大小相同的4个白球和3个红球。 (1)从中任摸2个球,求摸出的两个球颜色不同的概率; (2)从中任摸3个球,求摸到白球的个数的分布列与数学期望。
已知锐角三角形 (1)求 (2)若
(几何证明选讲选做题)如图,已知
(不等式选讲选做题)函数
(坐标系与参数方程选讲选做题)在平面直角坐标系
将一条长为1米的绳子第一次剪去
以双曲线
等差数列
抛物线
利用计算机在区间 (A)
在 (A)
已知直线 (A) (C)
函数 (A) (C)
正四棱锥的底面边长为 (A)3 (B)6 (C)9 (D)18
|