已知曲线C1manfen5.com 满分网(t为参数),C2manfen5.com 满分网(θ为参数).
(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C1上的点P对应的参数为t=manfen5.com 满分网,Q为C2上的动点,求PQ中点M到直线C1manfen5.com 满分网(t为参数)距离的最小值.
函数manfen5.com 满分网
(1)若f(x)的定义域为R,求实数a的取值范围;
(2)若f(x)的定义域为[-2,1],求实数a的值.
已知数列{an}的前n项和为Sn,且对任意正整数n,有Snmanfen5.com 满分网,n(a≠0,a≠1)成等差数列,令bn=(an+1)lg(an+1).
(1)求数列{an}的通项公式an(用a,n表示)
(2)当manfen5.com 满分网时,数列{bn}是否存在最小项,若有,请求出第几项最小;若无,请说明理由;
(3)若{bn}是一个单调递增数列,请求出a的取值范围.
已知二次函数f(x)=ax2+bx满足条件:①f(0)=f(1);  ②f(x)的最小值为-manfen5.com 满分网
(1)求函数f(x)的解析式;
(2)设数列{an}的前n项积为Tn,且Tn=(manfen5.com 满分网f(n),求数列{an}的通项公式;
(3)在(2)的条件下,若5f(an)是bn与an的等差中项,试问数列{bn}中第几项的值最小?求出这个最小值.
已知函数f(x)=x,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数.
(I)求λ的最大值;
(II)若g(x)<t2+λt+1在x∈[-1,1]上恒成立,求t的取值范围;
(Ⅲ)讨论关于x的方程manfen5.com 满分网的根的个数.
在三棱锥的四个面中,最多有    个面为直角三角形.
manfen5.com 满分网
已知函数manfen5.com 满分网.(1)那么方程f(x)=0在区间[-2009,2009]上的根的个数是    ;(2)对于下列命题:①函数f(x)是周期函数;②函数f(x)既有最大值又有最小值;③函数f(x)的定义域是R,且其图象有对称轴;④对于任意x∈(-1,0),函数f(x)的导函数f'(x)<0.其中真命题的序号是    .(填写出所有真命题的序号)
设V是已知平面M上所有向量的集合,对于映射f:V→V,a∈V,记a的象为f(a).若映射f:V→V满足:对所有a、b∈V及任意实数λ,μ都有f(λa+μb)=λf(a)+μf(b),则f称为平面M上的线性变换.现有下列命题:
①设f是平面M上的线性变换,a、b∈V,则f(a+b)=f(a)+f(b);
②若e是平面M上的单位向量,对a∈V,设f(a)=a+e,则f是平面M上的线性变换;
③对a∈V,设f(a)=-a,则f是平面M上的线性变换;
④设f是平面M上的线性变换,a∈V,则对任意实数k均有f(ka)=kf(a).
其中的真命题是    (写出所有真命题的编号)
对于函数f(x)=manfen5.com 满分网|x|3-manfen5.com 满分网x2+(3-a)|x|+b.
(1)若f(2)=7,则f(-2)=   
(2)若f(x)有六个不同的单调区间,则a的取值范围是   
如图,在正三棱锥P-ABC中,M、N分别是侧棱PB、PC的中点,若截面AMN⊥侧面PBC,则此三棱锥的侧棱与底面所成角的正切值是.
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
t=sinα+cosα且sin3α+cos3α<0,则t的取值范围是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
设M={(x,y)|y=x2+2bx+1},P={(x,y)|y=2a(x+b)},S={(a,b)|M∩P=∅},则S的面积是( )
A.1
B.π
C.4
D.4π
manfen5.com 满分网,其中n是正整数,α是小数,且0<α<1,则n的值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
设函数f(x)=x-[x],其中[x]为取整记号,如[-1.2]=-2,[1.2]=1,[1]1.又函数g(x)=-manfen5.com 满分网,f(x)在区间(0,2)上零点的个数记为m,f(x)与g(x)图象焦点的个数记为n,则∫mng(x)dx的值是( )
A.-manfen5.com 满分网
B.-manfen5.com 满分网
C.-manfen5.com 满分网
D.-manfen5.com 满分网
已知f(x)=a-x(a>0且a≠1),f-1(x)的反函数,若f-1(2)<0,则f-1(x+1)的图象大致( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
若函数y=f(x)的定义域是[0,2],则函数manfen5.com 满分网的定义域是( )
A.[0,1]
B.[0,1)
C.[0,1)∪(1,4]
D.(0,1)
已知函数f(x)=log2(x2-ax+3a)在区间[2,+∞)上递增,则实数a的取值范围是( )
A.(-∞,4)
B.(-4,4]
C.(-∞,-4)∪[2,+∞)
D.[-4,2)
函数f(θ )=manfen5.com 满分网的最大值和最小值分别是( )
A.最大值manfen5.com 满分网和最小值0
B.最大值不存在和最小值manfen5.com 满分网
C.最大值-manfen5.com 满分网和最小值0
D.最大值不存在和最小值-manfen5.com 满分网
函数f(x)和g(x)的定义域为[a,b],若对任意的x∈[a,b],总有manfen5.com 满分网,则称f(x)可被g(x)“置换”.下列函数中,能置换函数manfen5.com 满分网,x∈[4,16]的是( )
A.manfen5.com 满分网
B.g(x)=x2+6,x∈[4,16]
C.g(x)=x+6,x∈[4,16]
D.g(x)=2x+6,x∈[4,16]
若函数f(x)的零点与g(x)=4x+2x-2的零点之差的绝对值不超过0.25,则f(x)可以是( )
A.f(x)=4x-1
B.f(x)=(x-1)2
C.f(x)=ex-1
D.f(x)=ln(x-manfen5.com 满分网
函数f(x)=cos(x-manfen5.com 满分网)+2|sin(π+x)|(x∈[0,2π])的图象与直线y=k有且仅有两个不同交点,则k的取值范围是( )
A.(-1,3)
B.(-1,0)∪(0,3)
C.(0,1)
D.(1,3)
已知manfen5.com 满分网,设f(n)=s2n+1-sn+1,试确定实数m的取值范围,使得对于一切大于1的正整数n,不等式manfen5.com 满分网恒成立.
制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=manfen5.com 满分网,求数列{cn}的前n项和Tn
manfen5.com 满分网某单位用木料制作如图所示的框架,框架的下部是边长分别为x、y(单位:m)的矩形.上部是等腰直角三角形.要求框架围成的总面积8m2.问x、y分别为多少(精确到0.001m)时用料最省?
数列{an}首项为23,公差为整数的等差数列,且前6项均为正,从第7项开始变为负的:
(1)求此等差数列的公差d;
(2)设前n项和为Sn,求Sn的最大值;
(3)当Sn是正数时,求n的最大值.
已知A={xㄧx2-3x-4<0 },B={xㄧx2-4x+3>0 },求A∩B.
定义符号函数sgnx=manfen5.com 满分网则不等式:x+2>(2x-1)sgnr的解集是    
若方程x2-2x+lg(2a2-a)=0有一个正根和一个负根,则实数a的取值范围是    
已知数列{an}满足a1=33,an+1-an=2n,则manfen5.com 满分网的最小值为   
Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.