某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为:不超过50kg按0.53元/kg收费,超过50kg的部分按0.85元/kg收费.相应收费系统的流程图如图所示,则①处应填( )![]() A.y=0.85 B.y=50×0.53+(x-50)×0.85 C.y=0.53 D.y=50×0.53+0.85 |
|
下列命题错误的是( ) A.对于命题p:∃x∈R,使得x2+x+1<0,则-p为:∀x∈R,均有x2+x+1≥0 B.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0” C.若p∧q为假命题,则p,q均为假命题 D.“x>2”是“x2-3x+2>0”的充分不必要条件 |
|
已知等差数列{an}的前n项和为Sn,若a4=18-a5,则S8=( ) A.72 B.68 C.54 D.90 |
|
在复平面内,复数![]() A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
|
若集合A={1,2,3,4},B={x∈N||x|≤2},则A∩B=( ) A.{1,2,3,4} B.{-2,-1,0,1,2,3,4} C.{1,2} D.{2,3,4} |
|
已知函数![]() (1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围; (2)当a=1时,求f(x)在 ![]() (3)当a=1时,求证:对大于1的任意正整数n,都有 ![]() |
|
已知数列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N). (1)写出a2、a3的值(只写结果)并求出数列{an}的通项公式; (2)设 ![]() ![]() |
|
已知点P是⊙O:x2+y2=9上的任意一点,过P作PD垂直x轴于D,动点Q满足![]() (1)求动点Q的轨迹方程; (2)已知点E(1,1),在动点Q的轨迹上是否存在两个不重合的两点M、N,使 ![]() |
|
如图所示,在正方体ABCD-A1B1C1D1中,E为AB的中点 (1)若F为AA1的中点,求证:EF∥面DD1C1C; (2)若F为AA1的中点,求二面角A-EC-D1的余弦值. ![]() |
|
在一个圆锥体的培养房内培养了40只蜜蜂,准备进行某种实验,过圆锥高的中点有一个不计厚度且平行于圆锥底面的平面把培养房分成两个实验区,其中小锥体叫第一实验区,圆台体叫第二实验区,且两个实验区是互通的.假设蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的. (1)求蜜蜂落入第二实验区的概率; (2)若其中有10只蜜蜂被染上了红色,求恰有一只红色蜜蜂落入第二实验区的概率; (3)记X为落入第一实验区的蜜蜂数,求随机变量X的数学期望EX. |
|