相关试题
当前位置:首页 > 高中数学试题
已知动圆C过点A(-2,0),且与圆M:(x-2)2+y2=64相内切
(1)求动圆C的圆心的轨迹方程;
(2)设直线l:y=kx+m(其中k,m∈Z)与(1)所求轨迹交于不同两点B,D,与双曲线manfen5.com 满分网交于不同两点E,F,问是否存在直线l,使得向量manfen5.com 满分网,若存在,指出这样的直线有多少条?若不存在,请说明理由.
如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,manfen5.com 满分网manfen5.com 满分网,EF=2.
(1)求证:AE∥平面DCF;
(2)设manfen5.com 满分网,当λ取何值时,二面角A-EF-C的大小为manfen5.com 满分网
某系统采用低息贷款的方式对所属企业给予扶持,该系统制定了评分标准,并根据标准对企业进行评估,然后依据评估得分将这些企业分别定为优秀、良好、合格、不合格四个等级,并根据等级分配相应的低息贷款数额.为了更好地掌握贷款总额,该系统随机抽查了所属的部分企业,以下图表给出了有关数据(将频率看作概率)
评估得分[50,60)[60,70)[70,80)[80,90)
评定类型不合格合格良好优秀
贷款金额(万元)200400800
(1)任抽一家所属企业,求抽到的企业等级是优秀或良好的概率;
(2)对照标准,企业进行了整改,整改后,如果优秀企业数量不变,不合格企业、合格企业、良好企业的数量成等差数列.要使所属企业获得贷款的平均值(即数学期望)不低于410万元,那么整改后不合格企业占企业总数百分比的最大值是多少?

manfen5.com 满分网
已知数列{an}的前n项和为Sn,点(n,Sn)在函数f(x)=3x2-2x的图象上,
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网,Tn是数列{bn}的前n项和,求使manfen5.com 满分网成立的最小正整数n的值.
manfen5.com 满分网边长为1的菱形ABCD沿对角线AC折成大小等于θ的二面角B-AC-D.若manfen5.com 满分网,M,N分别为AC,BD的中点,则下列说法中正确的有   
①AC⊥MN   ②DM与平面ABC所成角为θ   ③线段MN的最大值是manfen5.com 满分网,最小值是manfen5.com 满分网    ④当时θ=manfen5.com 满分网时,BC与AD所成角等于manfen5.com 满分网
在等比数列{an}中,manfen5.com 满分网manfen5.com 满分网,则数列{an}的前5项之和的值为   
已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称.直线4x-3y-2=0与圆C相交与A、B两点,且|AB|=6,则圆C的方程为   
已知锐角△ABC的面积为3manfen5.com 满分网,BC=4,CA=3,则角C的大小为     °.
某港口的水深(米)是时间t(0≤t≤24)(单位:时)的函数,记作y=f(t)下面是该港口某季节每天水深的数据:
t3691215182124
y10.013.010.017.010.013.010.017.010.0
经过长期观察,y=f(t)的曲线可近似地看作y=Asinωt+b的图象,一般情况下,船舶航行时,船底离海底的距离不小于5m是安全的(船舶停靠岸时,船底只需不碰海底即可).某船吃水深度(船底离水面距离)为6.5m,如果该船想在同一天内安全出港,问它至多能在港内停留的时间是(忽略进出港所用时间)( )
A.17
B.16
C.5
D.4
设a,b分别为先后抛掷一枚骰子得到的点数,则在先后两次出现的点数有5的条件下,方程x2+ax+b=0有实根的概率是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
共1028964条记录 当前(75178/102897) 首页 上一页 75173 75174 75175 75176 75177 75178 75179 75180 75181 75182 75183 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.