命题p:“∃x∈R,使得x2+x+1<0”,则¬p:   
“|x-1|<2成立”是“x(x-3)<0成立”的    条件.
已知函数manfen5.com 满分网在x=1处取得极值2.
(1)求函数f(x)的表达式;
(2)当m满足什么条件时,函数f(x)在区间(m,2m+1)上单调递增?
(3)若P(x,y)为manfen5.com 满分网图象上任意一点,直线l与manfen5.com 满分网的图象切于点P,求直线l的斜率k的取值范围.
已知函数f(x)=manfen5.com 满分网(a、b为常数且a≠0)满足f(2)=1且f(x)=x有唯一解.
(1)求f(x)的表达式;
(2)记xn=f(xn-1)(n∈N且n>1),且x1=f(1),求数列{xn}的通项公式.
(3)记 yn=xn•xn+1,数列{yn}的前n项和为Sn,求证Snmanfen5.com 满分网
已知椭圆manfen5.com 满分网的左、右焦点分别为F1,F2,点P是x轴上方椭圆E上的一点,且PF1⊥F1F2manfen5.com 满分网manfen5.com 满分网
(Ⅰ) 求椭圆E的方程和P点的坐标;
(Ⅱ)判断以PF2为直径的圆与以椭圆E的长轴为直径的圆的位置关系.
已知集合A={-2,0,1,3},在平面直角坐标系中,点M的坐标(x,y)满足x∈A,y∈A.
(Ⅰ)请列出点M的所有坐标;
(Ⅱ)求点M不在y轴上的概率;
(Ⅲ)求点M正好落在区域manfen5.com 满分网上的概率.
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点D是AB的中点.
(1)求证:AC⊥BC1
( 2)求证:AC1∥平面CDB1

manfen5.com 满分网
已知函数manfen5.com 满分网
(1)求函数f(x)的最小正周期和最大值;
(2)求y=f(x)的单调区间.
在直角坐标系中曲线C的极坐标方程为ρ=2cosθ-4sinθ,写出曲线C的直角坐标方程   
(选做题)如图,四边形ABCD内接于⊙O,BC是直径,MN与⊙O相切,切点为A,∠MAB=35°,则∠D=   
manfen5.com 满分网
下列四个命题中:①∀x∈R,2x2-3x+4>0;②∀x∈1,-1,0,2x+1>0;③∃x∈N,使x2≤x;④∃x∈N,使x为29的约数.则所有正确命题的序号有   
manfen5.com 满分网在如图所示的算法流程图中,输出S的值为   
已知角α的终边经过点P(x,-6),且manfen5.com 满分网,则x的值为   
某企业生产甲、乙两种产品.已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨、B原料不超过18吨,那么该企业可获得最大利润是( )
A.12万元
B.20万元
C.25万元
D.27万元
若抛物线y2=2px的焦点与椭圆manfen5.com 满分网的右焦点重合,则p的值为( )
A.-2
B.2
C.-4
D.4
下列函数f(x)中,满足“对任意x1、x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)的是( )
A.f(x)=manfen5.com 满分网
B.f(x)=(x-1)2
C.f(x)=ex
D.f(x)=ln(x+1)
将函数y=sinx的图象上所有的点向右平行移动manfen5.com 满分网个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )
A.y=sin(2x-manfen5.com 满分网
B.y=sin(2x-manfen5.com 满分网
C.y=sin(manfen5.com 满分网x-manfen5.com 满分网
D.y=sin(manfen5.com 满分网x-manfen5.com 满分网
已知等比数列{an}的前三项依次为a-1,a+1,a+4,则an=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
在复平面内,复数manfen5.com 满分网(i是虚数单位)对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
函数f(x)=log2x+2x-1的零点所在的区间为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.(1,2)
一个单位有职工800人,期中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是( )
A.12,24,15,9
B.9,12,12,7
C.8,15,12,5
D.8,16,10,6
已知曲线y=2x3,则过点(1,2)的切线的斜率是( )
A.2
B.6
C.4
D.8
若集合A={x|1≤x≤3},B={x|x>2},则A∩B等于( )
A.{x|2<x≤3}
B.{x|x≥1}
C.{x|2≤x<3}
D.{x|x>2}
某工厂今年1月、2月、3月生产某产品分别为1万件、1.2万件、1.3万件,为了估计以后每月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量,y与月份x的关系,模拟函数可以选用二次函数或函数y=a•bx+c(a、b、c为常数)已知四月份该产品的产量为1.37万件,请问用以上哪个函数作模拟函数较好?说明理由.
在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD相交于点O,PO⊥平面ABCD,PB与平面ABCD所成的角为60°,
求:(1)直线PA与底面ABCD所成的角;
(2)四棱锥P-ABCD的体积.

manfen5.com 满分网
如图,已知直三棱柱ABC-A1B1C1中,AC=BC=2,M、N分别是棱CC1、AB的中点.求证:平面MCN⊥平面ABB1A1

manfen5.com 满分网
如图,已知某几何体的三视图如下(单位:cm).
(1)画出这个几何体的直观图(不要求写画法);
(2)求这个几何体的表面积及体积.

manfen5.com 满分网
.如图,直角梯形OABC位于直线x=t(0≤t≤5)

右侧的图形的面积为f(t),试求函数f(t)的解析式.

manfen5.com 满分网
已知α∩β=α,β∩γ=m,γ∩α=b,且m∥α,求证:a∥b.
如图,正方体ABCD-A1B1C1D1中,平面ABC1D1和平面ABCD所成二面角的大小是    °.
manfen5.com 满分网
Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.