集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( ) A.0 B.1 C.2 D.4 |
|
设函数f(x)=|x-1|+|x-2|. (1)解不等式f(x)>3; (2)若f(x)>a对x∈R恒成立,求实数a的取值范围. |
|
已知曲线C的极坐标方程是ρ=2sinθ,设直线l的参数方程是![]() (1)将曲线C的极坐标方程转化为直角坐标方程; (2)设直线l与x轴的交点是M,N为曲线C上一动点,求|MN|的最大值. |
|
如果曲线x2+4xy+3y2=1在矩阵![]() |
|
已知函数f(x)=plnx+(p-1)x2+1. (1)讨论函数f(x)的单调性; (2)当P=1时,f(x)≤kx恒成立,求实数k的取值范围; (3)证明:1n(n+1)<1+ ![]() ![]() |
|
如图是在竖直平面内的一个“通道游戏”.图中竖直线段和斜线段都表示通道,并且在交点处相遇,若竖直线段有第一条的为第一层,有二条的为第二层,…,依此类推.现有一颗小弹子从第一层的通道里向下运动.记小弹子落入第n层第m个竖直通道(从左至右)的概率为P(n,m).(已知在通道的分叉处,小弹子以相同的概率落入每个通道) (Ⅰ)求P(2,1),P(3,2)的值,并猜想P(n,m)的表达式.(不必证明) (Ⅱ)设小弹子落入第6层第m个竖直通道得到分数为ξ,其中ξ= ![]() ![]() |
|
![]() (Ⅰ)若在边BC上存在一点Q,使PQ⊥QD,求a的取值范围; (Ⅱ)当边BC上存在唯一点Q,使PQ⊥QD时,求二面角A-PD-Q的余弦值. |
|
已知圆M:(x+![]() ![]() ![]() (Ⅰ)求动圆圆心P的轨迹方程; (Ⅱ)在(Ⅰ)所求轨迹上是否存在一点Q,使得∠MQN为钝角?若存在,求出点Q横坐标的取值范围;若不存在,说明理由. |
|
设△ABC中的内角A,B,C所对的边长分别为a,b,c,且![]() (Ⅰ)当 ![]() (Ⅱ)求△ABC面积的最大值. |
|
在平面直角坐标系中,对其中任何一向量X=(x1,x2),定义范数||X||,它满足以下性质:(1)||X||≥0,当且仅当X为零向量时,不等式取等号;(2)对任意的实数λ,||λX||=|λ|•||X||(注:此处点乘号为普通的乘号);(3)||X||+||Y||≥||X+Y||.应用类比的方法,我们可以给出空间直角坐标系下范数的定义,现有空间向量X=(x1,x2,x3),下面给出的几个表达式中,可能表示向量X的范数的是 (把所有正确答案的序号都填上) (1) ![]() ![]() ![]() ![]() |
|