若复数![]() A.-2 B.4 C.-6 D.6 |
|
已知集合A{x|x<-1或x>1},B={log2x>0},则A∩B=( ) A.{x|x>1} B.{x|x>0} C.{x|x<-1} D.{x|x<-1或x>1} |
|
已知函数![]() (1)当t=2时,求函数f(x)的单调递增区间; (2)设|MN|=g(t),试求函数g(t)的表达式; (3)在(2)的条件下,若对任意的正整数n,在区间 ![]() |
|
已知二次函数f(x)=ax2+bx,f(x+1)为偶函数,函数f(x)的图象与直线y=x相切. (1)求f(x)的解析式; (2)若函数g(x)=[f(x)-k]x在(-∞,+∞)上是单调减函数,那么: ①求k的取值范围; ②是否存在区间[m,n](m<n),使得f(x)在区间[m,n]上的值域恰好为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由. |
|
已知函数f(x)=x2+bsinx-2,(b∈R),F(x)=f(x)+2,且对于任意实数x,恒有F(x-5)=F(5-x). (1)求函数f(x)的解析式; (2)已知函数g(x)=f(x)+2(x+1)+alnx在区间(0,1)上单调,求实数a的取值范围; (3)函数 ![]() |
|
设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10. (1)求证:{lgan}是等差数列; (2)设 ![]() |
|
已知命题p:指数函数f(x)=(2a-6)x在R上单调递减,命题q:关于x的方程x2-3ax+2a2+1=0的两个实根均大于3.若p或q为真,p且q为假,求实数a的取值范围. |
|
已知函数f(x)=ax2+2x+1(a∈R). (1)若f(x)的图象与x轴恰有一个公共点,求a的值; (2)若方程f(x)=0至少有一正根,求a的范围. |
|
已知数列{an},满足a1=1,an=a1+2a2+3a3+…+(n-1)an-1(n≥2),则{an}的通项 . | |
如图,四边形ABCD内接于⊙O,AB=BC.AT是⊙O的切线,∠BAT=55°,则∠D等于 .![]() |
|