如图,正方形ABCD的顶点 , ,顶点C,D位于第一象限,直线t:x=t(0≤t≤ )将正方形ABCD分成两部分,记位于直线l左侧阴影部分的面积为f(t),则函数s=f(t)的图象大致是( )A. ![]() B. ![]() C. ![]() D. ![]() |
|
设函数 则不等式f(x)>f(1)的解集是( )A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞) C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3) |
|
为了得到函数 的图象,只需把函数y=lgx的图象上所有的点( )A.向左平移3个单位长度,再向上平移1个单位长度 B.向右平移3个单位长度,再向上平移1个单位长度 C.向左平移3个单位长度,再向下平移1个单位长度 D.向右平移3个单位长度,再向下平移1个单位长度 |
|
已知函数 的最小值为( )A.1 B. ![]() C. ![]() D. ![]() |
|
若复数 (a∈R,i为虚数单位位)是纯虚数,则实数a的值为( )A.-2 B.4 C.-6 D.6 |
|
|
已知命题p:∀x∈R,sinx≤1,则( ) A.¬p:∃x∈R,sinx≥1 B.¬p:∀x∈R,sinx≥1 C.¬p:∃x∈R,sinx>1 D.¬p:∀x∈R,sinx>1 |
|
设全集U=R,A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则图中阴影表示的集合为( )A.{2} B.{3} C.{-3,2} D.{-2,3} |
|
已知函数f(x)= ,x∈[-1,8],函数g(x)=ax+2,x∈[-1,8].若对任意x1∈[-1,8],总存在x2∈[-1,8],使f(x1)=g(x2)成立.则实数a的取值范围是 .
|
|
某污水处理厂的一净化水池设有2个进水口和1个出水口,三个水口至少打开一个.每个进水口进水的速度由图甲给出,出水口出水的速度由图乙给出,某天0点到6点,该水池的蓄水量与时间的函数关系如图丙所示.通过观察,得出了以下三个论断:(1)0点到3点只进水不出水;(2)3点到4点不进水只出水;(3)4点到6点不进水也不出水.其中正确的是 .
|
|
如图,质点P在半径为10cm的圆上逆时针作匀速圆周运动,角速度为2rad/s,设A(10,0)为起始点,则时刻t=2时,点P在x轴上的射影点M的速度 cm/s.
|
|
