相关试题
当前位置:首页 > 高中数学试题
已知数列{an}是各项均不为0的等差数列,Sn为其前n项和,且满足an2=S2n-1,令manfen5.com 满分网,数列{bn}的前n项和为Tn
(1)求数列{an}的通项公式及数列{bn}的前n项和为Tn
(2)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.
已知函数f(x)=x3+a•x2+bx+c的图象上的一点M(1,m)处的切线的方程为y=2,其中a,b,c∈R.
(1)若a=-3,求f(x)的解析式,并表示成f(x)=(x+t)3+k,(t,k为常数);
(2)问函数y=f(x)是否有单调减区间,若存在,求单调减区间(用a表示),若不存在,请说明理由.
如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2.
(Ⅰ)求证:C1D∥平面ABB1A1
(Ⅱ)求直线BD1与平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D-A1C1-A的余弦值.

manfen5.com 满分网
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.
向量manfen5.com 满分网,设函数g(x)=manfen5.com 满分网manfen5.com 满分网(a∈R,且a为常数).
(1)若x为任意实数,求g(x)的最小正周期;
(2)若g(x)在manfen5.com 满分网上的最大值与最小值之和为7,求a的值.
给出如下命题:
①直线manfen5.com 满分网是函数manfen5.com 满分网的一条对称轴;
②函数f(x)关于点(3,0)对称,满足f(6+x)=f(6-x),且当x∈[0,3]时,函数为增函数,则f(x)在[6,9]上为减函数;
③命题“对任意a∈R,方程x2+ax-1=0有实数解”的否定形式为“存在a∈R,方程x2+ax-1=0无实数解”;
④lg25+lg2•lg50=1.
以上命题中正确的是   
如图,在平行四边形ABCD中,E和F分别在边CD和BC上,且manfen5.com 满分网,若manfen5.com 满分网,其中m,n∈R,则m+n=   
manfen5.com 满分网
过抛物线y2=2px(p>0)的焦点F作直线l,交抛物线于A、B两点,交其准线于C点,若manfen5.com 满分网,则直线l的斜率为   
若二项式manfen5.com 满分网的展开式中含manfen5.com 满分网的项是第三项,则n的值是   
定义在R上的函数f(x)满足f(x)=manfen5.com 满分网,则f(2011)的值为( )
A.-1
B.0
C.1
D.2
共1028964条记录 当前(74847/102897) 首页 上一页 74842 74843 74844 74845 74846 74847 74848 74849 74850 74851 74852 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.