如图所示,在抗洪救灾中,一架直升机通过绳索,用恒力F竖直向上拉起一个漂在水面上的木箱,使其由水面开始加速上升到某一高度,若考虑空气阻力而不考虑空气浮力,则在此过程中,以下说法不正确的有( ) A. 力F和阻力的合力所做的功等于木箱机械能的增量 B. 木箱克服重力所做的功等于重力势能的增量 C. 力F、重力、阻力,三者合力所做的功等于木箱动能的增量 D. 力F所做功减去克服阻力所做的功等于重力势能的增量
水平面上甲、乙两物体,在某时刻动能相同,它们仅在摩擦力作用下停下来.图中的a、b分别表示甲、乙两物体的动能E和位移s的图象,则 ①若甲、乙两物体与水平面动摩擦因数相同,则甲的质量较大 ②若甲、乙两物体与水平面动摩擦因数相同,则乙的质量较大 ③若甲、乙质量相同,则甲与地面间的动摩擦因数较大 ④若甲、乙质量相同,则乙与地面间的动摩擦因数较大 以上说法正确的是( ) A. ①③ B. ②③ C. ①④ D. ②④
如图所示,甲、乙、丙三个轮子依靠摩擦传动,相互之间不打滑,其半径分别为r1、r2、r3.若甲轮的角速度为ω1,则丙轮的角速度为( ) A.
如图所示,A、B、C三颗人造地球卫星绕地球做匀速圆周运动,已知mA=mB<mC,则三颗卫星 ( ) A. 线速度大小关系:vA<vB=vC B. 加速度大小关系:aA>aB=aC C. 向心力大小关系:FA=FB<FC D. 周期关系:TA>TB=TC
如图所示,a、b、c:三个相同的小球,a从光滑斜面顶端由静止开始自由下滑,同时b、c从同高度分别开始自由下落和平抛。则从开始到水平地面的过程中 A. 它们的落地时间相同 B. 运动过程中重力做的功相同 C. 它们落地时的动能相同 D. 它们落地时重力的瞬时功率相同
一质点在xoy平面内运动的轨迹如图所示,已知质点在x方向的分运动是匀速运动,则关于质点在y方向的分运动的描述正确的是( ) A. 匀速运动 B. 先加速运动后减速运动 C. 先减速运动后加速运动 D. 先匀速运动后加速运动
如图,从地面上方某点,将一小球以5m/s的初速度沿水平方向抛出。小球经过1s落地。不计空气阻力,g =10m/s2。则可求出 ( ) A. 小球抛出时离地面的高度是5 m B. 小球从抛出点到落地点的水平位移大小是5m C. 小球落地时的速度大小是15m/s D. 小球落地时的速度方向与水平地面成300角
下列几种运动中,不属于匀变速运动的是( ) A. 斜下抛运动 B. 斜上抛运动 C. 平抛运动 D. 匀速圆周运动
(题文)如图1所示,水平传送带保持以速度v0向右运动,传送带长L=10m。t=0时刻,将质量为M=1kg的木块轻放在传送带左端,木块向右运动的速度—时间图象(v-t图象)如图2所示。当木块刚运动到传送带最右端时,一颗质量为m=20g的子弹以大小为v1=250m/s水平向左的速度正对射入木块并穿出,子弹穿出时速度大小为v2=50m/s,以后每隔时间△t=1s就有一颗相同的子弹射向木块。设子弹与木块的作用时间极短,且每次射入点各不相同,木块长度比传送带长度小得多,可忽略不计,子弹穿过木块前后木块质量不变,重力加速度取g=10m/s2。求: (1)传送带运行速度大小v0及木块与传送带间动摩擦因数μ. (2)木块在传送带上最多能被多少颗子弹击中.
如图所示,光滑水平面上有一质量M=4.0kg的平板车,车的上表面右侧是一段长L=1.0m的水平轨道,水平轨道左侧是一半径R=0.25m的1/4光滑圆弧轨道,圆弧轨道与水平轨道在O′点相切.车右端固定一个尺寸可以忽略、处于锁定状态的压缩弹簧,一质量m=1.0kg的小物块(可视为质点)紧靠弹簧,小物块与水平轨道间的动摩擦因数μ=0.5.整个装置处于静止状态.现将弹簧解除锁定,小物块被弹出,恰能到达圆弧轨道的最高点A.不考虑小物块与轻弹簧碰撞时的能量损失,不计空气阻力,取g=10m/s2.求: (1)解除锁定前弹簧的弹性势能; (2)小物块第二次经过O′点时的速度大小; (3)小物块与车最终相对静止时距O′点的距离
如图所示,光滑水平直导轨上有三个质量均为m的物块A、B、C,物块B、C静止,物块B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计);让物块A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短.那么从A开始压缩弹簧直至与弹簧分离的过程中,求. (1)A、B第一次速度相同时的速度大小; (2)A、B第二次速度相同时的速度大小; (3)弹簧被压缩到最短时的弹性势能大小
如图,水平面上相距为L=5m的P、Q两点分别固定一竖直挡板,一质量为M=2kg的小物块B静止在O点,OP段光滑,OQ段粗糙且长度为d=3m。一质量为m=1kg的小物块A以v0=6m/s的初速度从OP段的某点向右运动,并与B发生弹性碰撞。两物块与OQ段的动摩擦因数均为μ=0.2,两物块与挡板的碰撞时间极短且均不损失机械能。重力加速度g=10m/s2,求 (1)A与B在O点碰后瞬间各自的速度; (2)两物块各自停止运动时的时间间隔。
如图,质量分别为m1=1.0kg和m2=2.0kg的弹性小球a、b,用轻绳紧紧的把它们捆在一起,使它们发生微小的形变。该系统以速度v0=0.10m/s沿光滑水平面向右做直线运动。某时刻轻绳突然自动断开,断开后两球仍沿原直线运动。经过时间t=5.0s后,测得两球相距s=4.5m,则下列说法正确的是( ) A. 刚分离时,a球的速度大小为0.7m/s B. 刚分离时,b球的速度大小为0.2m/s C. 刚分离时,a、b两球的速度方向相同 D. 两球分开过程中释放的弹性势能为0.27J
质量为M和 A. M、 B. C. D. M、
甲、乙两个质量都是M的小车静置在光滑水平地面上.质量为m的人站在甲车上并以速度v(对地)跳上乙车,接着仍以对地的速率v反跳回甲车.对于这一过程,下列说法中正确的是: ( ) A. 最后甲、乙两车的速率相等 B. 最后甲、乙两车的速率之比v甲:v乙=M:(m+M) C. 人从甲车跳到乙车时对甲的冲量I1,从乙车跳回甲车时对乙车的冲量I2,应是I1=I2 D. 选择(C)中的结论应是I1<I2
甲、乙两个质量都是M的小车静置在光滑水平地面上.质量为m的人站在甲车上并以速度v(对地)跳上乙车,接着仍以对地的速率v反跳回甲车.对于这一过程,下列说法中正确的是: ( ) A. 最后甲、乙两车的速率相等 B. 最后甲、乙两车的速率之比v甲:v乙=M:(m+M) C. 人从甲车跳到乙车时对甲的冲量I1,从乙车跳回甲车时对乙车的冲量I2,应是I1=I2 D. 选择(C)中的结论应是I1<I2
(题文)如图所示,小车静止在光滑水平面上,AB是小车内半圆弧轨道的水平直径,现将一小球从距A点正上方h高处由静止释放,小球由A点沿切线方向经半圆轨道后从B点冲出,在空中能上升的最大高度为0.8h,不计空气阻力.下列说法正确的是( ) A. 在相互作用过程中,小球和小车组成的系统动量守恒 B. 小球离开小车后做竖直上抛运动 C. 小球离开小车后做斜上抛运动 D. 小球第二次冲出轨道后在空中能上升的最大高度为0.6h
如图所示,劲度系数为k的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m的物体A接触,但未与物体A连接,弹簧水平且无形变。现对物体A施加一个水平向右的瞬间冲量,大小为I0,测得物体A向右运动的最大距离为x0,之后物体A被弹簧弹回最终停在距离初始位置左侧2x0处。已知弹簧始终在弹簧弹性限度内,物体A与水平面间的动摩擦因数为μ,重力加速度为g,下列说法中正确的是: ( ) A. 物体A整个运动过程,弹簧对物体A的冲量为零 B. 物体A向右运动过程中与弹簧接触的时间一定小于物体A向左运动过程中与弹簧接触的时间 C. 物体A向左运动的最大速度 D. 物体A与弹簧作用的过程中,系统的最大弹性势能Ep=
如图所示,一辆小车装有光滑弧形轨道,总质量为m,停放在光滑水平向上.有一质量也为m的速度为v的铁球,沿轨道水平部分射入,并沿弧形轨道上升h后,又下降而离开小车,离车后球的运动情况是( ) A. 作平抛运动,速度方向与车运动方向相同 B. 作平抛运动,水平速度方向跟车相反 C. 作自由落体运动 D. 小球跟车有相同的速度
某同学质量为 A. 人和小船最终静止的水面上 B. 该过程同学的动量变化量为 C. 船最终的速度是 D. 船的动量变化量是
如图所示,小车与 木箱紧挨着静放在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱,关于上述过程,下列说法正确的是 A. 男孩与小车组成的系统动量守恒 B. 男孩与木箱组成的系统动量守恒 C. 小车与木箱组成的系统动量守恒 D. 男孩、小车与木箱组成的系统动量守恒
在光滑的水平面上有静止的物体A和B。物体A的质量是B的2倍,两物体中间用细绳束缚的处于压缩状态的轻质弹簧相连。当把细绳剪断,弹簧在恢复原长的过程中 A.A的速率是B的2倍 B.A的动量大于B的动量 C.A的受力大于B受的力 D.A.B组成的系统的总动量为零
A、B两球之间压缩一根轻弹簧,静置于光滑水平桌面上.已知A、B两球质量分别为2m和m.当用板挡住A球而只释放B球时,B球被弹出落于距桌边距离为x的水平地面上,如图所示.问当用同样的程度压缩弹簧,取走A左边的挡板,将A、B同时释放,B球的落地点距离桌边距离为: ( ) A.
如图所示,质量为m的半圆轨道小车静止在光滑的水平地面上,其水平直径AB长度为2R,现将质量也为m的小球从距A点正上方h0高处由静止释放,然后由A点经过半圆轨道后从B冲出,在空中能上升的最大高度为 A. 小球和小车组成的系统动量守恒 B. 小车向左运动的最大距离为 C. 小球离开小车后做斜上抛运动 D. 小球第二次能上升的最大高度
如图,一个三棱镜的截面为等腰直角形ABC,∠A为直角,直角边长为L。一细束光线沿此截面所在平面且平行于BC边的方向射到AB边上的某点M,光进入棱镜后直接射到BC边上。已知棱镜材料的折射率为 (i)作出完整的光路图(含出射光线,并在图上标出角度大小); (ii)计算光从进入棱镜,到第一次射出棱镜所需的时间。
如图,一列简谐横波沿x轴正方向传播,t=0时波形图如图中实线所示,此时波刚好传到c点,t=0.6s时波恰好传到e点,波形如图中虚线所示,a、b、c、d、e是介质中的质点,下列说法正确的是:_________(填正确答案标号。) A.该机械波传播速度为5m/s B.d点开始运动时方向沿y轴负方向 C.质点d在这段时间内通过的路程为20cm D.质点c在这段时间内沿x轴正方向移动了3m E.当t=0.5s时质点b、c的位移相同,但方向相反
如图,一圆筒形导热容器A深为H,横截面积为S,用一细管与容器B相连,K为阀门,开始时,K关闭,B为真空,A敞开,一个厚度不计,重为G的活塞恰能堵住容器A,并可在容器内无摩擦滑动,设大气压强为p0,气温为T0。 (i)将活塞置于A的开口端后放手则活塞将会下降,要使活塞能稳定在初始位置处,容器A内气温应为多大? (ii)打开阀门K,并将A、B倒置,使A的开口向下,问B的容积至少多大时活塞才不会掉下来?
下落说法正确的是________ A.自然界凡是符合能量守恒定律的宏观过程不一定都能自然发生 B.空中下落的雨滴呈球形是因为液体有表面张力 C.布朗运动是固体小颗粒分子的运动,能反应液体分子的热运动规律 D.一定量的100℃的水变成100℃的水蒸气需要加热,是由于要增大分子势能 E.空调机作为制热机使用时,将热量从温度较低的室外送到温度较高的室内,所以制热机的工作不遵循热量学第二定律
如图所示,相距L = 0.5 m的平行导轨MNS、PQT处在磁感应强度B =0.4T的匀强磁场中,水平导轨处的磁场方向竖直向上,光滑倾斜导轨处的磁场方向垂直于导轨平面斜向下。质量均为m = 40g、电阻均为R =0.1 Ω的导体棒ab、cd均垂直放置于导轨上,并与导轨接触良好,导轨电阻不计。质量为M = 200g的物体C,用绝缘细线绕过光滑的定滑轮分别与导体棒ab、cd相连接。细线沿导轨中心线且在导轨平面内,细线及滑轮质量不计。已知倾斜导轨与水平面的夹角θ =37°,水平导轨与ab棒间的动摩擦因数μ=0.4。重力加速度g =10m/s2,水平导轨足够长,导体棒cd运动过程中始终不离开倾斜导轨。物体C由静止释放,当它达到最大速度时下落高度h = 1m,试求这一运动过程中:(sin 37° =0.6,cos 37° = 0.8) (1)物体C能达到的最大速度vm是多少? (2)系统产生的内能是多少? (3)连接cd棒的细线对cd棒做的功是多少?
如图所示,t=0时,一小物块从光滑斜面上的A点由静止开始下滑,经过B点进入水平面(设经过B点前后速度大小不变),最后停在C点。下表记录了每隔2 s物块的瞬时速度,重力加速度g=10 m/s2,求: (1)物块与水平面间的动摩擦因数; (2)AB间的距离(结果保留一位小数)。
|