|
设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=( ) A.63 B.45 C.36 D.27 |
|
|
已知i为虚数单位,则复数z=i(1+i)在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
|
|
设P={x|x<1},Q={x|x2<4},则P∩Q( ) A.{x|-1<x<2} B.{x|-3<x<-1} C.{x|1<x<-4} D.{x|-2<x<1} |
|
已知函数 ,正实数a、b、c成公差为正数的等差数列,且满足f(a)f(b)f(c)<0,若实数d是方程f(x)=0的一个解,那么下列四个判断:①d<a;②d>b;③d<c;④d>c中,有可能成立的个数为 .
|
|
已知函数①f(x)=3lnx;②f(x)=3ecosx;③f(x)=3ex;④f(x)=3cosx.其中对于f(x)定义域内的任意一个自变量x1都存在唯一个个自变量x2,使 成立的函数序号是 .
|
|
| 已知函数f (x)=x2+2x+1,若存在t,当x∈[1,m]时,f (x+t)≤x恒成立,则实数m的最大值为 . | |
| 已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,若当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是 . | |
已知函数![]() ,给出以下四个命题:①f(x)的定义域为(0,+∞); ②f(x)的值域为[-1,+∞); ③f(x)是奇函数; ④f(x)在(0,1)上单调递增.其中所有真命题的序号是 . |
|
| 若方程x+log4x=7的解所在区间是(n,n+1)(n∈N*),则n= . | |
函数 的单调递减区间是 .
|
|
