函数f(x)=ln(x+1)- (x>0)的零点所在的大致区间是( )A.(0,1) B.(1,2) C.(2,e) D.(3,4) |
|
实数 的大小关系正确的是( )A.a<c<b B.a<b<c C.b<a<c D.b<c<a |
|
|
若不等式|x-1|<a成立的充分条件为0<x<4,则实数a取值范围是( ) A.[3,+∞] B.[1,+∞] C.(-∞,3] D.(-∞,1] |
|
|
已知命题p:∃n∈N,2n>1000,则¬p为( ) A.∀n∈N,2n≤1000 B.∀n∈N,2n>1000 C.:∃n∈N,2n≤1000 D.∃n∈N,2n<1000 |
|
|
已知集合A={x|x<a},B={x|1<x<2},且A∪∁RB=R,则实数a的取值范围是( ) A.a≤2 B.a<1 C.a≥2 D.a>2 |
|
|
设数列{an}的各项都是正数,且对任意n∈N+,都有a13+a23+a33+…+an3=Sn2,其中Sn为数列{an}的前n项和. (Ⅰ)求证:an2=2Sn-an; (Ⅱ)求数列{an}的通项公式; (Ⅲ)设bn=3n+(-1)n-1λ•2an(λ为非零整数,n∈N*)试确定λ的值,使得对任意n∈N*,都有bn+1>bn成立. |
|
|
已知f(x)=lnx-x2+bx+3. (Ⅰ)若函数f(x)在点(2,y)处的切线与直线2x+y+2=0垂直,求函数f(x)在区间[1,3]上的最小值; (Ⅱ)若f(x)在区间[1,m]上单调,求b的取值范围. |
|
已知可行域 的外接圆C与x轴交于点A1、A2,椭圆C1以线段A1A2为长轴,离心率 .(1)求圆C及椭圆C1的方程; (2)设椭圆C1的右焦点为F,点P为圆C上异于A1、A2的动点,过原点O作直线PF的垂线交直线 于点Q,判断直线PQ与圆C的位置关系,并给出证明. |
|
|
在△ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列, (Ⅰ)求B的值; (Ⅱ)求2sin2A+cos(A-C)的范围. |
|
给定两个长度为1的平面向量 和 ,它们的夹角为120°.(1)求| + |;(2)如图所示,点C在以O为圆心的圆弧 上变动.若 =x +y ,其中x,y∈R,求x+y的最大值?
|
|
