如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )![]() A.6 B.9 C.12 D.18 |
|
如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,an,输出A,B,则( )![]() A.A+B为a1,a2,…,an的和 B. ![]() C.A和B分别是a1,a2,…,an中最大的数和最小的数 D.A和B分别是a1,a2,…,an中最小的数和最大的数 |
|
已知{an} 为等比数列,a4+a7=2,a5a6=-8,则a1+a10=( ) A.7 B.5 C.-5 D.-7 |
|
设F1、F2是椭圆![]() ![]() A. ![]() B. ![]() C. ![]() D. ![]() |
|
下面是关于复数z=![]() p1:|z|=2, p2:z2=2i, p3:z的共轭复数为1+i, p4:z的虚部为-1. A.p2,p3 B.p1,p2 C.p2,p4 D.p3,p4 |
|
将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) A.12种 B.10种 C.9种 D.8种 |
|
已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为( ) A.3 B.6 C.8 D.10 |
|
(I)已知函数f(x)=rx-xr+(1-r)(x>0),其中r为有理数,且0<r<1.求f(x)的最小值; (II)试用(I)的结果证明如下命题:设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2; (III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求道公式(xα)r=αxα-1. |
|
设A是单位圆x2+y2=1上的任意一点,i是过点A与x轴垂直的直线,D是直线i与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C. (I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标; (Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由. |
|
根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:
(I)工期延误天数Y的均值与方差; (Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率. |
|||||||||||