相关试题
当前位置:首页 > 高中数学试题
数列{bn}(n∈N*)是递增的等比数列,且b1+b3=5,b1b3=4.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若an=log2bn+3,求证数列{an}是等差数列;
(Ⅲ)若a1+a2+a3+…+am≤a40,求m的最大值.
一个多面体的三视图和直观图如图所示,其中正视图和俯视图均为矩形,侧视图为直角三角形,M、G分别是AB、DF的中点.
manfen5.com 满分网
(1)求证:CM⊥平面FDM;
(2)在线段AD上确定一点P,使得GP∥平面FMC,并给出证明;
(3)求直线DM与平面ABEF所成的角.
已知manfen5.com 满分网
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
设函数f(x),g(x)的定义域分别为Df,Dg,且manfen5.com 满分网,若∀x∈Df,g(x)=f(x),则函数g(x)为f(x)在Dg上的一个延拓函数.已知f(x)=2x(x<0),g(x)是f(x)在R上的一个延拓函数,且g(x)是奇函数,则g(x)=   
在一次招聘口试中,每位考生都要在5道备选试题中随机抽出3道题回答,答对其中2道题即为及格,若一位考生只会答5道题中的3道题,则这位考生能够及格的概率为   
若不等式组manfen5.com 满分网表示的平面区域是一个三角形,则s的取值范围是    
已知△AOB,点P在直线AB上,且满足manfen5.com 满分网,则manfen5.com 满分网=   
观察下列等式:观察下列等式:
Cmanfen5.com 满分网+Cmanfen5.com 满分网=23-2,
Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网=27+23
Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网=211-25
Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网=215+27

由以上等式推测到一个一般结论:
对于n∈N*,Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网+…+Cmanfen5.com 满分网=   
manfen5.com 满分网一个几何体的三视图如图所示,则该几何体的体积为   
manfen5.com 满分网某大学对1000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图如图所示,现规定不低于70分为合格,则合格人数是   
共1028964条记录 当前(75332/102897) 首页 上一页 75327 75328 75329 75330 75331 75332 75333 75334 75335 75336 75337 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.