在数列{an}中,若a1,a2是正整数,且an=|an-1-an-2|,n=3,4,5,…,则称{an}为“绝对差数列”. (1)举出一个前五项不为零的“绝对差数列”(只要求写出前十项); (2)证明:任何“绝对差数列”中总含有无穷多个为零的项. |
|
已知抛物线S的顶点在坐标原点,焦点在x轴上,△ABC的三个顶点都在抛物线上,且△ABC的重心为抛物线的焦点,若BC所在直线l的方程为4x+y-20=0. (I)求抛物线S的方程; (II)若O是坐标原点,P、Q是抛物线S上的两动点,且满足PO⊥OQ.试说明动直线PQ是否过一个定点. |
|
如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB,点M是SD的中点,AN⊥SC,且交SC于点N. (I)求证:SB∥平面ACM; (Ⅱ)求二面角D-AC-M的大小; (Ⅲ)求证:平面SAC⊥平面AMN. ![]() |
|
某城市有30%的家庭订阅了A报,有60%的家庭订阅了B报,有20%的家庭同时订阅了A报和B报,从该城市中任取4个家庭. (Ⅰ)求这4个家庭中恰好有3个家庭订阅了A报的概率; (Ⅱ)求这4个家庭中至多有3个家庭订阅了B报的概率; (Ⅲ)求这4个家庭中恰好有2个家庭A,B报都没有订阅的概率. |
|
观察式子:1+![]() ![]() ![]() |
|
一个底面边长为2cm,高为![]() |
|
(2006年广东卷)在![]() |
|
![]() |
|
已知函数![]() |
|
把函数y=sin2x的图象按向量![]() |
|