已知函数![]() A.[0,2) B.(0,2) C.(1,2] D.[1,2) |
|
椭圆E的中心在原点O,焦点在x轴上,离心率![]() ![]() (1)若λ为常数,试用直线l的斜率k(k≠0)表示三角形OAB的面积; (2)若λ为常数,当三角形OAB的面积取得最大值时,求椭圆E的方程; (3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴长取得最大值?并求出此时的椭圆方程. |
|
关于x的方程2x2-tx-2=0的两根为α,β(α<β),函数f(x)=![]() (1)求f(α)和f(β)的值. (2)证明:f(x)在[α,β]上是增函数. (3)对任意正数x1.x2,求证: ![]() |
|
如图,曲线y2=x(y≥0)上的点Pi与x轴的正半轴上的点Qi及原点O构成一系列正三角形△OP1Q1,△Q1P2Q2,…△Qn-1PnQn…设正三角形Qn-1PnQn的边长为an,n∈N﹡(记Q为O),Qn(Sn,0). (1)求a1的值; (2)求数列{an}的通项公式an. ![]() |
|
数列{an}的前n项和为Sn,Sn=2an-3n(n∈N*) (1)若数列{an+c}成等比数列,求常数c值; (2)求数列{an}的通项公式an (3)数列{an}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由. |
|
如图:直平行六面体ABCD-A1B1C1D1,底面ABCD是边长为2a的菱形,∠BAD=60°,E为AB中点,二面角A1-ED-A为60°. (I)求证:平面A1ED⊥平面ABB1A1; (II)求二面角A1-ED-C1的余弦值; (III)求点C1到平面A1ED的距离. ![]() |
|
袋中装有大小相同的2个白球和3个黑球. (Ⅰ)从袋中任意取出两个球,求两球颜色不同的概率; (Ⅱ)从袋中任意取出一个球,记住颜色后放回袋中,再任意取出一个球,求两次取出的球颜色不同的概率. |
|
![]() ![]() ![]() ![]() ![]() ![]() ![]() (I)求向量 ![]() (II)若映射 ![]() ①求映射f下(1,2)原象; ②若将(x、y)作点的坐标,问是否存在直线l使得直线l上任一点在映射f的作用下,仍在直线上,若存在求出l的方程,若不存在说明理由. |
|
已知![]() ![]() |
|
在△ABC中,已知![]() ![]() ![]() |
|