设计一个计算1×3×5×7×9×11×13的算法.图中给出了程序的一部分,则在横线①上不能填入的数是( )![]() A.13 B.13.5 C.14 D.14.5 |
|
若复数z=(m2+2m-3)+(m-1)i是纯虚数,则实数m的值为( ) A.1 B.-3或1 C.-3 D.-1或3 |
|
已知命题p:∀x∈R,sinx≤1,则( ) A.¬p:∃x∈R,sinx≥1 B.¬p:∀x∈R,sinx≥1 C.¬p:∃x∈R,sinx>1 D.¬p:∀x∈R,sinx>1 |
|
已知函数![]() (1)证明函数y=f(x)的图象关于点(a,-1)成中心对称图形; (2)当x∈[a+1,a+2]时,求证:f(x)∈ ![]() (3)我们利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造数列的过程中,如果xi(i=2,3,4,…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止. (i)如果可以用上述方法构造出一个常数列{xn},求实数a的取值范围; (ii)如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的值 |
|
定义域为R的函数f(x)满足:对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x>0时f(x)<0恒成立. (1)判断函数f(x)的奇偶性,并证明你的结论; (2)证明f(x)为减函数;若函数f(x)在[-3,3]上总有f(x)≤6成立,试确定f(1)应满足的条件;(3)解关于x的不等式 ![]() |
|
如图,函数y=![]() ![]() (1)写出用B的横坐标t表示△ABC面积S的函数解析式S=f(t); (2)求函数S=f(t)的最大值,并求出相应的C点坐标. ![]() |
|
已知函数![]() (1)求f-1(x)的表达式; (2)判断f-1(x)的单调性; (3)若对于区间 ![]() ![]() |
|
设x1,x2是函数![]() (Ⅰ)证明:0<a≤1; (Ⅱ)证明: ![]() |
|
已知a>1,函数f(x)=loga(x2-ax+2)在x∈[2,+∞)时的值恒为正. (1)a的取值范围; (2)记(1)中a的取值范围为集合A,函数g(x)=log2(tx2+2x-2)的定义域为集合B.若A∩B≠∅,求实数t的取值范围. |
|
已知函数![]() ①h(x)的图象关于原点对称; ②h(x)为偶函数; ③h(x)的最小值为0; ④h(x)在(0,1)上为减函数. 其中正确命题的序号为: . |
|