sin45°•cos15°+cos225°•sin15°的值为( ) A. ![]() B. ![]() C. ![]() D. ![]() |
|
已知集合M={x|-3<x<1},N={x|x≤-3},则M∪N=( ) A.∅ B.{x|x≥-3} C.{x|x≥1} D.{x|x<1} |
|
已知椭圆C1![]() ![]() ![]() (1)求椭圆C1的方程; (2)已知菱形ABCD的顶点A,C在椭圆C1上,对角线BD所在的直线的斜率为1. ①当直线BD过点(0, ![]() ②当∠ABC=60°时,求菱形ABCD面积的最大值. |
|
设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f'(x)的最小值为-12. (Ⅰ)求a,b,c的值; (Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在[-1,3]上的最大值和最小值. |
|
![]() ![]() (1)求证:AO⊥平面BCD; (2)求异面直线AB与CD所成角的大小; (3)求二面角O-AC-D的大小. |
|
已知二次函数f(x)=x2-ax+a(a>0,x∈R)有且只有一个零点,数列{an}的前n项和Sn=f(n)(n∈N*). (Ⅰ)求数列{an}的通项公式; (Ⅱ)设 ![]() |
|
某单位为加强普法宣传力度,增强法律意识,举办了“普法知识竞赛”,现有甲、乙、丙三人同时回答一道有关法律知识的问题,已知甲回答对这道题的概率是![]() ![]() ![]() (1)求乙、丙两人各自回答对这道题的概率. (2)求甲、乙、丙三人中恰有两人回答对该题的概率. |
|
已知函数![]() (1)求f(x)的单调递增区间; (2)在△ABC中,角A,B,C的对边分别是a,b,c满足(2a-c)cosB=bcosC,求函数f(A)的取值范围. |
|
设函数![]() ①图象C关于直线 ![]() ②图象C的一个对称中心是 ![]() ③函数f(x)在区间 ![]() ④图象C可由y=-3sin2x的图象左平移 ![]() |
|
已知双曲线![]() |
|