已知f(x)=2x3-5x,g(x)=x3+ax2+bx+c,x∈(0,+∞),设(1,f(1))是曲线y=f(x)与y=g(x)的一个公共点,且在此点处的切线相同.记g(x)的导函数为g'(x),对任意x∈(0,+∞)恒有g'(x)>0. (1)求a,b,c之间的关系(请用b表示a、c); (2)求b的取值范围; (3)证明:当x∈(0,+∞)时,f(x)≥g(x). |
|
在数列{an}中,已知a1=1,an=an-1+an-2+…+a2+a1(n∈N*,n≥2). (1)求数列{an}的通项公式; (2)若bn=log2an, ![]() |
|
现有甲、乙两个口袋,甲袋装有2个红球和2个白球,乙袋装有2个红球和n个白球,某人从甲、乙两个口袋中等可能性地各取2个球. (1)若n=3,求取到的4个球全是红球的概率; (2)若取到的4个球中至少有2个红球的概率为 ![]() |
|
(文科做) 如图,在边长为a的正方体ABCD-A1B1C1D1中M、N、P、Q分别为AD,CD,BB1,C1D1的中点 (1)求点P到平面MNQ的距离; (2)求直线PN与平面MPQ所成角的正弦值. ![]() |
|
设函数f(x)=sin(2x+∅)(-π<φ<0),y=f(x)图象的一条对称轴是直线![]() (I)求φ,并指出y=f(x)由y=sin2x作怎样变换所得. (II)求函数y=f(x)的单调增区间; (III)画出函数y=f(x)在区间[0,π]上的图象. ![]() |
|
给出下列四个命题: ①“向量a,b的夹角为锐角”的充要条件是“a•b>0”; ②如果f(x)=lgx,则对任意的x1、x2∈(0,+∞),且x1≠x2,都有 ![]() ③将4个不同的小球全部放入3个不同的盒子,使得每个盒子至少放入1个球,共有72种不同的放法; ④记函数y=f(x)的反函数为y=f-1(x),要得到y=f-1(1-x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f-1(1-x)的图象. 其中真命题的序号是 .(请写出所有真命题的序号) |
|
若![]() |
|
![]() |
|
在△ABC中,角A、B、C的对边分别为a,b,c,已知![]() |
|
设等比数列{an}的公比![]() ![]() |
|