已知椭圆![]() ![]() ![]() (Ⅰ)求椭圆C的方程; (Ⅱ)设P(4,0),M,N是椭圆C上关于x轴对称的任意两个不同的点,连接PN交椭圆C于另一点E,求直线PN的斜率的取值范围; (Ⅲ)在(Ⅱ)的条件下,证明直线ME与x轴相交于定点. |
|
已知函数![]() (Ⅰ)若a=3,试确定函数f(x)的单调区间; (Ⅱ)若函数f(x)在其图象上任意一点(x,f(x))处切线的斜率都小于2a2,求实数a的取值范围. |
|
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点, (1)求证:AC⊥BC1; (2)求证:AC1∥平面CDB1; (3)求三棱锥C1-CDB1的体积. ![]() |
|
![]() (1)求第四小组的频率,并补全这个频率分布直方图; (2)估计这次考试的及格率(60分及以上为及格)和平均分. |
|
已知A、B、C是△ABC的三个内角,向量![]() ![]() (1)求角A; (2)若 ![]() |
|
![]() ![]() |
|
曲线ρ=2cosθ关于直线θ=![]() |
|
如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化后正好盛满杯子,则杯子高h= .![]() |
|
右面的程序框图,如果输入三个实数a,b,c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入 .![]() |
|
已知向量![]() ![]() ![]() |
|