已知椭圆C的对称中心为原点O,焦点在x轴上,离心率为![]() ![]() (I)求椭圆C的方程; (II)过椭圆C的左焦点F1的直线l与椭圆C相交于A,B两点,若△AOB的面积为 ![]() |
|
如果有穷数列a1,a2,a3,…,am(m为正整数)满足条件a1=am,a2=am-1,…,am=a1,即ai=am-i+1(i=1,2,…,m),我们称其为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”. (1)设{bn}是7项的“对称数列”,其中b1,b2,b3,b4是等差数列,且b1=2,b4=11.依次写出{bn}的每一项; (2)设{cn}是49项的“对称数列”,其中c25,c26,…,c49是首项为1,公比为2的等比数列,求{cn}各项的和S; (3)设{dn}是100项的“对称数列”,其中d51,d52,…,d100是首项为2,公差为3的等差数列.求{dn}前n项的和Sn(n=1,2,…,100). |
|
为了保护环境,实现城市绿化,某房地产公司要在拆迁地长方形ABCD上规划出一块长方形地面建造公园,公园一边落在CD上,但不得越过文物保护区△AEF的EF.问如何设才能使公园占地面积最大,并求这最大面积(其中AB=200 m,BC=160m,AE=60m,AF=40m.)![]() |
|
如图:在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2. (I)证明:BC⊥平面AMN; (II)求三棱锥N-AMC的体积; (III)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由. ![]() |
|
一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片. (Ⅰ)若一次抽取3张卡片,求3张卡片上数字之和大于7的概率; (Ⅱ)若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率. |
|
已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若![]() ![]() ![]() (Ⅰ)求角A;(Ⅱ)若b+c=4,△ABC的面积为 ![]() |
|
定义运算:![]() ![]() ![]() |
|
曲线C1的参数方程为![]() |
|
如图是某一几何体的三视图,左视图为直角三角形,俯视图为矩形,则这个几何体的体积是 .![]() |
|
![]() |
|