相关试题
当前位置:首页 > 高中数学试题
已知椭圆C的对称中心为原点O,焦点在x轴上,离心率为manfen5.com 满分网,且点(1,manfen5.com 满分网)在该椭圆上.
(I)求椭圆C的方程;
(II)过椭圆C的左焦点F1的直线l与椭圆C相交于A,B两点,若△AOB的面积为manfen5.com 满分网,求圆心在原点O且与直线l相切的圆的方程.
如果有穷数列a1,a2,a3,…,am(m为正整数)满足条件a1=am,a2=am-1,…,am=a1,即ai=am-i+1(i=1,2,…,m),我们称其为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.
(1)设{bn}是7项的“对称数列”,其中b1,b2,b3,b4是等差数列,且b1=2,b4=11.依次写出{bn}的每一项;
(2)设{cn}是49项的“对称数列”,其中c25,c26,…,c49是首项为1,公比为2的等比数列,求{cn}各项的和S;
(3)设{dn}是100项的“对称数列”,其中d51,d52,…,d100是首项为2,公差为3的等差数列.求{dn}前n项的和Sn(n=1,2,…,100).
为了保护环境,实现城市绿化,某房地产公司要在拆迁地长方形ABCD上规划出一块长方形地面建造公园,公园一边落在CD上,但不得越过文物保护区△AEF的EF.问如何设才能使公园占地面积最大,并求这最大面积(其中AB=200 m,BC=160m,AE=60m,AF=40m.)

manfen5.com 满分网
如图:在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2.
(I)证明:BC⊥平面AMN;
(II)求三棱锥N-AMC的体积;
(III)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.

manfen5.com 满分网
一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.
(Ⅰ)若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;
(Ⅱ)若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率.
已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网
(Ⅰ)求角A;(Ⅱ)若b+c=4,△ABC的面积为manfen5.com 满分网,求a.
定义运算:manfen5.com 满分网=ad-bc,若数列{an}满足manfen5.com 满分网=1,且manfen5.com 满分网=2(n∈N*)则a3=    .数列{an}的通项公式为an=   
曲线C1的参数方程为manfen5.com 满分网(θ为参数,曲线C2的极坐标方程为ρ=2,以极点为原点.极轴为x轴的非负半轴,则曲线C1与C2的公共弦所在直线的直角坐标系方程为    
如图是某一几何体的三视图,左视图为直角三角形,俯视图为矩形,则这个几何体的体积是    
manfen5.com 满分网
manfen5.com 满分网如图的程序框图中,输出结果S=   
共1028964条记录 当前(74925/102897) 首页 上一页 74920 74921 74922 74923 74924 74925 74926 74927 74928 74929 74930 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.