(2005•宜宾)如图1,等腰直角三角形ABC的腰长是2,∠ABC=90度.以AB为直径作半圆O,M是BC上一动点(不运动至B、C两点),过点M引半圆为O的切线,切点是P,过点A作AB的垂线AN,交切线MP于点N,AC与ON、MN分别交于点E、F. (1)证明:△MON是直角三角形; (2)当BM= ![]() ![]() (3)当BM= ![]() ![]() |
|
(2005•漳州)已知:如图,直线EF与⊙O相切于点C,AB是⊙O的直径,且BC=3,Ac=4. (1)求半径OC的长; (2)在切线EF上找一点M,使得以B、M、C为顶点的三角形与△ACO相似. ![]() |
|
(2005•温州)如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D.点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s). (1)当x=______时,PQ⊥AC,x=______时,PQ⊥AB; (2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式为______ ![]() |
|
(2005•嘉兴)在坐标平面内,半径为R的⊙O与x轴交于点D(1,0)、E(5,0),与y轴的正半轴相切于点B.点A、B关于x轴对称,点P(a,0)在x的正半轴上运动,作直线AP,作EH⊥AP于H. (1)求圆心C的坐标及半径R的值; (2)△POA和△PHE随点P的运动而变化,若它们全等,求a的值;若给定a=6,试判定直线AP与⊙C的位置关系(要求说明理由). ![]() |
|
![]() ![]() (1)求证:AE=BE; (2)求DE的长; (3)求BD的长. |
|
(2005•荆门)已知,如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且DE平分∠CDF (1)求证:AB=AC; (2)若AC=3cm,AD=2cm,求DE的长. ![]() |
|
(2005•广东)如图,已知半圆O的直径AB=4,将一个三角板的直角顶点固定在圆心O上,当三角板绕着点O转动时,三角板的两条直角边与半圆圆周分别交于C、D两点,连接AD、BC交于点E. (1)求证:△ACE∽△BDE; (2)求证:BD=DE恒成立; (3)设BD=x,求△AEC的面积y与x的函数关系式,并写出自变量x的取值范围. ![]() |
|
(2005•哈尔滨)已知:如图,点O2是⊙O1上一点,⊙O2与⊙O1相交于A、D两点,BC⊥AD,垂足为D,分别交⊙O1、⊙O2于B、C两点,延长DO2交⊙O2于E,交BA延长线于F,BO2交AD于G,连接AD. (1)求证:∠BGD=∠C; (2)若∠DO2C=45°,求证:AD=AF; (3)若BF=6CD,且线段BD、BF的长是关于x的方程x2-(4m+2)x+4m2+8=0的两个实数根,求BD、BF的长. ![]() |
|
(2005•辽宁)如图,⊙O的弦AB=10,P是弦AB所对优弧上的一个动点,tan∠APB=2, (1)若△APB为直角三角形,求PB的长; (2)若△APB为等腰三角形,求△APB的面积. ![]() |
|
(2005•太原)如图,在锐角△ABC中,BA=BC,点O是边AB上的一个动点(不与点A、B重合),以O为圆心,OA为半径的圆交边AC于点M,过点M作⊙O的切线MN交BC于点N. (1)当OA=OB时,求证:MN⊥BC; (2)分别判断OA<OB、OA>OB时,上述结论是否成立,请选择一种情况,说明理由. ![]() |
|