(2005•绵阳)如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3. (1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明) (2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明; (3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论; (4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论. ![]() |
|
(2005•玉林)如图,在△ABC中,AB=AC,BE平分∠ABC,DE∥BC. 求证:DE=EC. ![]() |
|
(2005•云南)已知:如图,在△ABC中,∠ACB的平分线CD交AB于D,过B作BE∥CD交AC的延长线于点E. (1)求证:BC=CE; (2)求证: ![]() ![]() |
|
(2005•毕节地区)如图,已知△ABC中,D是AC边上一点,∠A=36°,∠C=72°,∠ADB=108°. 求证: (1)AD=BD=BC; (2)点D是线段AC的黄金分割点. ![]() |
|
(2005•长沙)如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合. (1)三角尺旋转了多少度______度; (2)连接CD,试判断△CBD的形状;______. (3)求∠BDC的度数.______度. ![]() |
|
(2005•锦州)如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE. (1)线段AF和BE有怎样的大小关系?请证明你的结论; (2)将图a中的△CEF绕点C旋转一定的角度,得到图b,这时(1)中的结论还成立吗?作出判断并说明理由; (3)若将图a中的△ABC绕点C旋转一定的角度,请你画出一个变换后的图形(草图即可),(1)中的结论还成立吗?作出判断不必说明理由; (4)根据以上证明、说理、画图,归纳你的发现. ![]() |
|
(2005•武汉)将两块含30°角且大小相同的直角三角板如图1摆放.![]() (1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,求证:CP1= ![]() (2)将图2中△A1B1C绕点C顺时针旋转30°到△A2B2C(如图3),点P2是A2C与AB的交点.线段CP1与P1P2之间存在一个确定的等量关系,请你写出这个关系式并说明理由; (3)将图3中线段CP1绕点C顺时针旋转60°到CP3(如图4),连接P3P2,求证:P3P2⊥AB. |
|
(2005•福州)已知,如图,在直角梯形ABCD中,AD∥BC,BC=5cm,CD=6cm,∠DCB=60°,∠ABC=90度.等边三角形MPN(N为不动点)的边长为acm,边MN和直角梯形ABCD的底边BC都在直线l上,NC=8cm.将直角梯形ABCD向左翻折180°,翻折一次得图形①,翻折二次得图形②,如此翻折下去. (1)将直角梯形ABCD向左翻折二次,如果此时等边三角形的边长a≥2cm,这时两图形重叠部分的面积是多少? (2)将直角梯形ABCD向左翻折三次,如果第三次翻折得到的直角梯形与等边三角形重叠部分的面积等于直角梯形ABCD的面积,这时等边三角形的边长a至少应为多少? (3)将直角梯形ABCD向左翻折三次,如果第三次翻折得到的直角梯形与等边三角形重叠部分的面积等于直角梯形ABCD的面积的一半,这时等边三角形的边长应为多少? ![]() |
|
(2005•江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上. (1)求证:AB⊥ED; (2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明. ![]() |
|
(2005•绵阳)如图,在△ABC中,AB=2,AC=BC,CD⊥AB,垂足是D,△BCE与△BCD是关于BC成轴对称的,且恰好使A、C、E在一条直线上.求四边形BDCE的面积.![]() |
|