(2005•天津)如图,在以O为圆心的两个同心圆中,小圆的半径长为2,大圆的弦AB与小圆交于点C、D,且AB=3CD,∠COD=60°. (1)求大圆半径的长; (2)若大圆的弦AE与小圆切于点F,求AE的长. ![]() |
|
(2005•乌兰察布)如图.⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,B、C为切点,求证:AB⊥AC.![]() |
|
(2006•双柏县)如图,AB是⊙O的直径,CB、CE分别切⊙O于点B、D,CE与BA的延长线交于点E,连接OC、OD. (1)△OBC与△ODC是否全等?______(填“是”或“否”); (2)已知DE=a,AE=b,BC=c,请你思考后,选用以上适当的数,设计出计算⊙O半径r的一种方案: ①你选用的已知数是______; ②写出求解过程.(结果用字母表示) ![]() |
|
(2005•常德)如图,AB是⊙O的直径,BC是⊙O的弦,⊙O的割线PDE垂直AB于点F,交BC于点G,连接PC,∠BAC=∠BCP,求解下列问题: (1)求证:CP是⊙O的切线. (2)当∠ABC=30°,BG= ![]() ![]() (3)若(1)的条件不变,当点C在劣弧AD上运动时,应再具备什么条件可使结论BG2=BF•BO成立?试写出你的猜想,并说明理由. ![]() |
|
(2005•恩施州)如图,AB为圆O的直径,C为圆O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB,延长AB交DC于点E. (1)判定直线DE与圆O的位置关系,并说明你的理由; (2)求证:AC2=AD•AB; (3)以下两个问题任选一题作答.(若两个问题都答,则以第一问的解答评分) ①若CF⊥AB于点F,试讨论线段CF、CE和DE三者的数量关系; ②若EC=5 ![]() ![]() |
|
(2005•甘肃)如图,AO是△ABC的中线,⊙O与AB边相切于点D. (1)要使⊙O与AC边也相切,应增加条件______(任写一个); (2)增加条件后,请你说明⊙O与AC边相切的理由. ![]() |
|
(2005•贵阳)在Rt△ABC中,∠C=90°,AC=6,BC=8,点O在CB上,且AO平分∠BAC,CO=3(如图所示),以点O为圆心,r为半径画圆. (1)r取何值时,⊙O与AB相切; (2)r取何值时,⊙O与AB有两个公共点; (3)当⊙O与AB相切时,设切点为D,在BC上是否存在点P,使△APD的面积为△ABC的面积的一半?若存在,求出CP的长;若不存在,请说明理由. ![]() |
|
(2005•马尾区)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于点F. (1)求OA、OC的长; (2)求证:DF为⊙O′的切线; (3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由. ![]() |
|
(2005•三明)如图,已知⊙O1和⊙O2相交于A、B两点,直线CD、EF过点B交⊙O1于点C、E,交⊙O2于点D、F. (1)求证:△ACD∽△AEF; (2)若AB⊥CD,且在△AEF中,AF、AE、EF的长分别为3、4、5,求证:AC是⊙O2的切线. ![]() |
|
(2005•沈阳)如图1,△ABC内接于⊙O,AD平分∠BAC,交直线BC于点E,交⊙O于点D. (1)过点D作MN∥BC,求证:MN是⊙O切线; (2)求证:AB•AC=AD•AE; (3)如图2,AE平分∠BAC的外角∠FAC,交BC的延长线于点E,EA的延长线交⊙O于点D.结论AB•AC=AD•AE是否仍然成立?如果成立,请写出证明过程;如果不成立,请说明理由. ![]() |
|