(2006•巴中)如图所示,已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC. (1)求证:DE是圆O的切线; (2)若∠C=30°,CD=10cm,求圆O的半径. ![]() |
|
(2005•福州)已知:如图,AB是⊙O的直径,P是AB上的一点(与A、B不重合),QP⊥AB,垂足为P,直线QA交⊙O于C点,过C点作⊙O的切线交直线QP于点D.则△CDQ是等腰三角形. 对上述命题证明如下: 证明:连接OC ∵OA=OC ∴∠A=∠1 ∵CD切O于C点 ∴∠OCD=90° ∴∠1+∠2=90° ∴∠A+∠2=90° 在Rt△QPA中,∠QPA=90° ∴∠A+∠Q=90° ∴∠2=∠Q ∴DQ=DC 即CDQ是等腰三角形. 问题:对上述命题,当点P在BA的延长线上时,其他条件不变,如图所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由. ![]() |
|
(2005•广州)如图,AB是圆O的弦,直线DE切圆O于点C,AC=BC, 求证:DE∥AB. ![]() |
|
(2005•哈尔滨)已知:如图,AB是⊙O的直径,点P为BA延长线上一点,PC为⊙O的切线,C为切点,BD⊥PC,垂足为D,交⊙O于E,连接AC、BC、EC. (1)求证:BC2=BD•BA; (2)若AC=6,DE=4,求PC的长. ![]() |
|
(2005•梅州)已知,如图(甲),正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点,P不运动到M和C,以AB为直径做⊙O,过点P作⊙O的切线交AD于点F,切点为E. (1)求四边形CDFP的周长; (2)试探索P在线段MC上运动时,求AF•BP的值; (3)延长DC、FP相交于点G,连接OE并延长交直线DC于H(如图乙),是否存在点P,使△EFO∽△EHG?如果存在,试求此时的BP的长;如果不存在,请说明理由. ![]() |
|
(2005•南充)如图,点O是Rt△ABC斜边上一点,⊙O与AC,BC分别相切于点M,N. (1)△AMO是否相似于△ONB?______(填“是”或“否”); (2)如果OA=4,OB=3,⊙O的半径为______. ![]() |
|
(2005•宁德)已知:如图,直线PA交⊙O于A、E两点,PA的垂线DC切⊙O于点C,过A点作⊙O的直径AB. (1)求证:AC平分∠DAB; (2)若DC=4,DA=2,求⊙O的直径. ![]() |
|
(2005•陕西)已知:如图,AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC. 求证:(1)BC平分∠PBD; (2)BC2=AB•BD. ![]() |
|
(2005•四川)如图,P是⊙O的半径OA上的一点,D在⊙O上,且PD=PO.过点D作⊙O的切线交OA的延长线于点C,延长交⊙O于K,连接KO,OD. (1)证明:PC=PD; (2)若该圆半径为5,CD∥KO,请求出OC的长. ![]() |
|
(2005•芜湖)如图,PA为⊙O的切线,A为切点,PO交⊙O于点B,OA=3,OP=6,求∠BAP的度数.![]() |
|