(2005•资阳)如图,已知点M、N分别是△ABC的边BC、AC的中点,点P是点A关于点M的对称点,点Q是点B关于点N的对称点,求证:P、C、Q三点在同一条直线上.![]() |
|
(2005•沈阳)某工厂中有若干个形状完全相同的直角三角形铁片余料,(如图),已知∠ACB=90°,AC=3,BC=4,现准备对两块铁片余料进行裁剪,方案如下: 方案一:如图1,裁出一个扇形,圆心为点C,并且与AB相切于点D. 方案二:如图2,裁出一个半圆,圆心O在BC上,并且与AB、AC相切于点D、C; ![]() (1)分别计算以上两种方案裁剪下来的图形的面积,并把计算结果直接填在横线上.按照方案一裁出的扇形面积是______;按照方案二裁出的半圆的面积是______; (2)写出按照方案二裁出的半圆面积的计算过程. |
|
(2005•无锡)已知,点P是正方形ABCD内的一点,连PA、PB、PC. (1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1). ①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积; ②若PA=2,PB=4,∠APB=135°,求PC的长; (2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上. ![]() |
|
(2005•日照)如图,直角梯形ABCD中,AD∥BC,∠A=90°,∠C=60°,AD=3cm,BC=9cm.⊙O1的圆心O1从点A开始沿折线A-D-C以1cm/s的速度向点C运动,⊙O2的圆心O2从点B开始沿BA边以![]() (1)请求出⊙O2与腰CD相切时t的值; (2)在0s<t≤3s范围内,当t为何值时,⊙O1与⊙O2外切? ![]() |
|
(2005•青岛)某新建小区要在一块等边三角形的公共区域内修建一个圆形花坛. (1)若要使花坛面积最大,请你在这块公共区域(如图)内确定圆形花坛的圆心P; (2)若这个等边三角形的边长为18米,请计算出花坛的面积. ![]() |
|
(2005•滨州)如图,AC是⊙O的直径,BC切⊙O于点C,AB交⊙O于点D,连接DO,并延长交BC的延长线于点E.过D作⊙O的切线交BC于点F. (Ⅰ)求证:F是BC的中点; (Ⅱ)若BC=2,且S△DBF:S△DCE=3:2,求AD:DB的值. ![]() |
|
(2005•吉林)如图,PA是⊙O的切线,切点为A,割线PCB交⊙O于C、B两点,半径OD⊥BC,垂足为E,AD交PB于点F. (1)PA与PF是否相等?______(填“是”或“否”); (2)若F是PB的中点,CF=1.5,则切线PA的长为______. ![]() |
|
(2005•仙桃)已知:如图,BD是⊙O的直径,过圆上一点A作⊙O的切线交DB的延长线于P,过B点作BC∥PA交⊙O于C,连接AB、AC. (1)求证:AB=AC; (2)若PA=10,PB=5,求⊙O的半径和AC的长. ![]() |
|
![]() (1)求证:AD∥BC; (2)求证:MF2=AF•BF; (3)如果⊙O1的直径长为8,tan∠ACB= ![]() |
|
(2005•遂宁)如图,CA和CB都是⊙O的切线,切点分别为A、B,连接OC交弦AB于点D已知⊙O的半径为4,弦AB=![]() (1)求证:OC垂直平分AB; (2)求劣弧 ![]() ![]() |
|