(2005•陕西)如图,PC切⊙O于点C,过圆心的割线PAB交⊙O于A、B两点,BE⊥PE,垂足为E,BE交⊙O于点D,F是PC上一点,且PF=AF,FA的延长线交⊙O于点G.求证: (1)∠FGD=2∠PBC; (2) ![]() ![]() |
|
(2005•上海)在△ABC中,∠ABC=90°,AB=4,BC=3,O是边AC上的一个动点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E,作EP⊥ED,交射线AB于点P,交射线CB于点F. (1)如图,求证:△ADE∽△AEP; (2)设OA=x,AP=y,求y关于x的函数解析式,并写出它的定义域; (3)当BF=1时,求线段AP的长. ![]() |
|
(2005•天水)如图,己知⊙Ol与⊙O2外切于点P,A在⊙Ol上,AC切⊙O2于点C,交⊙O1于点B,AP的延长线交⊙O2于点D. (1)求证:PC平分∠BPD; (2)求证:PC2=PB•PD; (3)当⊙O1、⊙O2的半径分别为2cm、3cm时,sin∠BAP的值是多少?当⊙O1、⊙O2的半径分别为4cm、6cm时,sin∠BAP的值是多少?分析sin∠BAP值的变化,你能发现什么规律?请尝试证明或否定你的猜想. ![]() |
|
(2005•天水)如图,已知⊙O的两条弦AC、BD相交于点Q,OA⊥BD. (1)求证:AB2=AQ•AC; (2)若过点C的⊙O的切线交DB的延长线于点P,求证:PC=PQ. ![]() |
|
(2005•宜宾)如图1,等腰直角三角形ABC的腰长是2,∠ABC=90度.以AB为直径作半圆O,M是BC上一动点(不运动至B、C两点),过点M引半圆为O的切线,切点是P,过点A作AB的垂线AN,交切线MP于点N,AC与ON、MN分别交于点E、F. (1)证明:△MON是直角三角形; (2)当BM= ![]() ![]() (3)当BM= ![]() ![]() |
|
(2005•漳州)已知:如图,直线EF与⊙O相切于点C,AB是⊙O的直径,且BC=3,Ac=4. (1)求半径OC的长; (2)在切线EF上找一点M,使得以B、M、C为顶点的三角形与△ACO相似. ![]() |
|
(2005•烟台)(1)如图1,直线MN与⊙O相交,且与⊙O的直径AB垂直,垂足为P,过点P的直线与⊙O交于C、D两点,直线AC交MN于点E,直线AD交MN于点F.求证:PC•PD=PE•PF. (2)如图2,若直线MN与⊙O相离.(1)中的其余条件不变,那么(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由. (3)在图3中,直线MN与⊙O相离,且与⊙O的直径AB垂直,垂足为P. ①请按要求画出图形:画⊙O的割线PCD(PC<PD),直线BC与MN交于E,直线BD与MN交于F. ②能否仍能得到(1)中的结论?请说明理由. ![]() |
|
(2005•荆门)已知,如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且DE平分∠CDF (1)求证:AB=AC; (2)若AC=3cm,AD=2cm,求DE的长. ![]() |
|
(2005•广东)如图,已知半圆O的直径AB=4,将一个三角板的直角顶点固定在圆心O上,当三角板绕着点O转动时,三角板的两条直角边与半圆圆周分别交于C、D两点,连接AD、BC交于点E. (1)求证:△ACE∽△BDE; (2)求证:BD=DE恒成立; (3)设BD=x,求△AEC的面积y与x的函数关系式,并写出自变量x的取值范围. ![]() |
|
(2005•丽水)如图,在⊙O中,弦AB与CD相交于点P,连接AC、DB. (1)求证:△PAC与△PDB是否相似______(填“是”或“否”); (2)当 ![]() ![]() ![]() |
|