(2005•常德)如图,AB是⊙O的直径,BC是⊙O的弦,⊙O的割线PDE垂直AB于点F,交BC于点G,连接PC,∠BAC=∠BCP,求解下列问题: (1)求证:CP是⊙O的切线. (2)当∠ABC=30°,BG= ![]() ![]() (3)若(1)的条件不变,当点C在劣弧AD上运动时,应再具备什么条件可使结论BG2=BF•BO成立?试写出你的猜想,并说明理由. ![]() |
|
(2005•恩施州)如图,AB为圆O的直径,C为圆O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB,延长AB交DC于点E. (1)判定直线DE与圆O的位置关系,并说明你的理由; (2)求证:AC2=AD•AB; (3)以下两个问题任选一题作答.(若两个问题都答,则以第一问的解答评分) ①若CF⊥AB于点F,试讨论线段CF、CE和DE三者的数量关系; ②若EC=5 ![]() ![]() |
|
(2005•甘肃)如图,已知AC、AB是⊙O的弦,AB>AC. (1)在图(a)中,能否在AB上确定一点E,使得AC2=AE•AB,为什么? (2)在图(b)中,在条件(1)的结沦下延长EC到P,连接PB,如果PB=PE,试判断PB和⊙O的位置关系,并说明理由. ![]() |
|
(2005•黄冈)如图,已知⊙O的弦AB垂直于直径CD,垂足为F,点E在AB上,且EA=EC. (1)求证:AC2=AE•AB; (2)延长EC到点P,连接PB,若PB=PE,试判断PB与⊙O的位置关系,并说明理由. ![]() |
|
(2005•荆州)如图i,半圆O为△ABC的外接半圆,AC为直径,D为劣弧![]() (1)求证:AP是半圆O的切线; (2)当其它条件不变时,问添加一个什么条件后,有BD2=BE•BC成立?说明理由; (3)如图ii,在满足(2)问的前提下,若OD⊥BC与H,BE=2,EC=4,连接PD,请探究四边形ABDO是什么特殊的四边形,并求tan∠DPC的值. ![]() |
|
(2005•兰州)如图,已知在△ABC中,AB=AC=6,cosB=![]() (1)求证:直线EF是⊙O的切线; (2)求y关于x的函数关系式(不要求写自变量的取值范围). ![]() |
|
(2005•三明)如图,已知⊙O1和⊙O2相交于A、B两点,直线CD、EF过点B交⊙O1于点C、E,交⊙O2于点D、F. (1)求证:△ACD∽△AEF; (2)若AB⊥CD,且在△AEF中,AF、AE、EF的长分别为3、4、5,求证:AC是⊙O2的切线. ![]() |
|
(2005•沈阳)如图1,△ABC内接于⊙O,AD平分∠BAC,交直线BC于点E,交⊙O于点D. (1)过点D作MN∥BC,求证:MN是⊙O切线; (2)求证:AB•AC=AD•AE; (3)如图2,AE平分∠BAC的外角∠FAC,交BC的延长线于点E,EA的延长线交⊙O于点D.结论AB•AC=AD•AE是否仍然成立?如果成立,请写出证明过程;如果不成立,请说明理由. ![]() |
|
(2005•双柏县)如图,AB是⊙O的直径,过A作⊙O的切线,在切线上截取AC=AB,连接OC交⊙O于D,连接BD并延长交AC于E,⊙F是△ADE的外接圆,F在AE上. 求证:(1)CD是⊙F的切线;(2)CD=AE. ![]() |
|
(2005•乌鲁木齐)如图,在△ABC中,∠ABC=90°,AB=6,BC=8.以AB为直径的⊙O交AC于D,E是BC的中点,连接ED并延长交BA的延长线于点F. (1)求证:DE是⊙O的切线; (2)求DB的长; (3)求S△FAD:S△FDB的值. ![]() |
|