(2005•青岛)操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况. 研究: (1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明; (2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由; (3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明. ![]() |
|
(2005•绍兴)E、F为平行四边形ABCD的对角线DB上三等分点,连AE并延长交DC于P,连PF并延长交AB于Q,如图① (1)在备用图中,画出满足上述条件的图形,记为图②,试用刻度尺在图①、②中量得AQ、BQ的长度,估计AQ、BQ间的关系,并填入下表:(长度单位:cm)
(2)上述(1)中的猜测AQ、BQ间的关系成立吗?为什么? (3)若将平行四边形ABCD改为梯形(AB∥CD)其他条件不变,此时(1)中猜测AQ、BQ间的关系是否成立?(不必说明理由) ![]() |
|||||||||||||
(2005•四川)如图,△ABC内接于⊙O,直径CD⊥AB,垂足为E,弦BF交CD于点M,交AC于点N,且BF=AC,连接AD、AM![]() 求证:(1)△ACM≌△BCM; (2)AD•BE=DE•BC; (3)BM2=MN•MF. |
|
(2005•苏州)(1)如图1所示,在等边△ABC中,点D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE∥BC; (2)如图2所示,将(1)中等边△ABC的形状改成以BC为底边的等腰三角形,所作△EDC相似于△ABC,请问仍有AE∥BC?证明你的结论. ![]() |
|
(2005•遂宁)如图:在平行四边形ABCD中,E是AD上的一点.求证:![]() ![]() |
|
(2005•威海)如图,AF⊥CE,垂足为点O,AO=CO=2,EO=FO=1. (1)求证:点F为BC的中点; (2)求四边形BEOF的面积. ![]() |
|
(2005•扬州)等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P点旋转. (1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE∽△CFP; (2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F. ①探究1:△BPE与△CFP还相似吗?(只需写出结论) ②探究2:连接EF,△BPE与△PFE是否相似?请说明理由; ③设EF=m,△EPF的面积为S,试用m的代数式表示S. ![]() |
|
(2005•玉林)如图,AB与CD相交于E,AE=EB,CE=ED,D为线段FB的中点,CF与AB交于点G,若CF=15cm,求GF之长.![]() |
|
(2005•岳阳)如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45度. (1)求证:△ABD∽△DCE; (2)设BD=x,AE=y,求y关于x的函数关系式; (3)当:△ADE是等腰三角形时,求AE的长. ![]() |
|
(2005•漳州)如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在AM,BN上运动(点D不与A重合,点C不与B重合),E是AB上的动点(点E不与A,B重合),在运动过程中始终保持DE⊥CE,且AD+DE=AB=a. (1)求证:△ADE∽△BEC; (2)当点E为AB边的中点时(如图2),求证:①AD+BC=CD;②DE,CE分别平分∠ADC,∠BCD; (3)设AE=m,请探究:△BEC的周长是否与m值有关,若有关请用含m的代数式表示△BEC的周长;若无关请说明理由. ![]() |
|