(2005•泸州)如图,⊙O是△ABC的外接圆,AB为直径,AC=CF,CD⊥AB于D,且交⊙O于G,AF交CD于E. (1)求∠ACB的度数; (2)求证:AE=CE; (3)求证:AC2=AE•AF. ![]() |
|
(2005•双柏县)已知:如图,在平面直角坐标系中,点C在y轴上,以C为圆心,4cm为半径的圆与x轴相交于点A、B,与y轴相交于D、E,且![]() ![]() (1)求∠BPA的度数; (2)若过点P的⊙C的切线交x轴于点G,是否存在点P,使△APB与以A、G、P为顶点的三角形相似?若存在,求出点P的坐标;若不存在,说明理由. ![]() |
|
(2005•泰安)某“研究性学习小组”遇到了以下问题,请参与: 已知,△ABC是等边三角形且内接于⊙O,取 ![]() ![]() ![]() ![]() ![]() (1)如图1,图2,图3,M分别为 ![]()
![]() (3)对(2)中提出的猜想,依图4给出证明. |
|||||||||||||
(2005•潍坊)如图,AD是△ABC的角平分线,延长AD交△ABC的外接圆O于点E,过C、D、E三点的圆O1交AC的延长线于点F,连接EF、DF. (1)求证:△AEF∽△FED; (2)若AD=6,DE=3,求EF的长; (3)若DF∥BE,试判断△ABE的形状,并说明理由. ![]() |
|
(2005•重庆)如图,AB是△ABC的外接圆⊙O的直径,D是⊙O上的一点,DE⊥AB于点E,且DE的延长线分别交AC、⊙O、BC的延长线于F、M、G. (1)求证:AE•BE=EF•EG; (2)连接BD,若BD⊥BC,且EF=MF=2,求AE和MG的长. ![]() |
|
(2007•兰州)如图,已知AB为⊙O的直径,弦CD⊥AB,垂足为H. (1)求证:AH•AB=AC2; (2)若过A的直线与弦CD(不含端点)相交于点E,与⊙O相交于点F,求证:AE•AF=AC2; (3)若过A的直线与直线CD相交于点P,与⊙O相交于点Q,判断AP•AQ=AC2是否成立.(不必证明) ![]() |
|
(2005•河南)空投物资用的某种降落伞的轴截面如图所示,△ABG是等边三角形,C、D是以AB为直径的半圆O的两个三等分点,CG、DG分别交AB于点E、F,试判断![]() |
|
(2005•台州)如图,在平面直角坐标系内,⊙C与y轴相切于D点,与x轴相交于A(2,0)、B(8,0)两点,圆心C在第四象限. (1)求点C的坐标; (2)连接BC并延长交⊙C于另一点E,若线段BE上有一点P,使得AB2=BP•BE,能否推出AP⊥BE?请给出你的结论,并说明理由; (3)在直线BE上是否存在点Q,使得AQ2=BQ•EQ?若存在,求出点Q的坐标;若不存在,也请说明理由. ![]() |
|
(2005•徐州)如图,已知⊙O的直径AB垂直于弦CD,垂足为G,F是CD延长线上的一点,AF交⊙O于点E,连接CE.若CF=10,![]() ![]() |
|
(2005•余姚市)如图,AB为⊙O直径,过弦AC的点C作CF⊥AB于点D,交AE所在直线于点F. 求证:AC2=AE•AF. ![]() |
|