若△ABC中,sinA:sinB:sinC=2:3:4,那么cosC=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
已知{an}是等比数列,a2=2,a5=manfen5.com 满分网,则公比q=( )
A.manfen5.com 满分网
B.-2
C.2
D.manfen5.com 满分网
数列1,-3,5,-7,9,的一个通项公式为( )
A.an=2n-1
B.an=(-1)n(1-2n)
C.an=(-1)n(2n-1)
D.an=(-1)n(2n+1)
已知等差数列{an}的首项a1=1,公差d=1,前n项和为Snmanfen5.com 满分网
(1)求数列{bn}的通项公式;
(2)求证:b1+b2+…+bn<2.
为了了解九年级学生中女生的身高(单位:cm)情况,某中学对九年级女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:
组 别频数频率
145.5~149.510.02
149.5~153.540.08
153.5~157.5200.40
157.5~161.5150.30
161.5~165.580.16
165.5~169.5mn
合 计MN
(1)求出表中m,n,M,N所表示的数分别是多少?
(2)画出频率分布直方图;
(3)全体女生中身高在哪组范围内的人数最多?估计九年级学生中女生的身高在161.5以上的概率.
对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:问:甲、乙谁的平均成绩最好?谁的各门功课发展较平衡?manfen5.com 满分网
已知△ABC的内角A、B、C所对的边分别为a、b、c,且a=2,manfen5.com 满分网
(Ⅰ)若b=4,求sinA的值;
(Ⅱ)若△ABC的面积S=4,求b、c的值.
某人射击一次命中7~10环的概率如下表
命中环数78910
命中概率0.160.190.280.24
计算这名射手在一次 射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率;
(3)射中环数不足8环的概率.
将A、B两枚骰子各抛掷一次,观察向上的点数,问:
(1)共有多少种不同的结果?
(2)两枚骰子点数之和是3的倍数的结果有多少种?
(3)两枚骰子点数之和是3的倍数的概率为多少?
若以先后抛掷两枚骰子分别得到的点数x、y作为P点的坐标,则P点落在区域manfen5.com 满分网的概率是   
在△ABC中,B=135°,C=15°,a=5,则此三角形的最大边长为   
manfen5.com 满分网如图,该程序运行后输出的结果为   
不等式5-x2>4x的解集为   
设x>0,y>0,x+y+xy=2,则x+y的最小值是( )
A.manfen5.com 满分网
B.1+manfen5.com 满分网
C.2manfen5.com 满分网-2
D.2-manfen5.com 满分网
在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016
如图,在圆心角为90°的扇形中以圆心O为起点作射线OC,则使得∠AOC与∠BOC都不小于30°的概率是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于( )
A.40
B.42
C.43
D.45
10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12设其平均数为a,中位数为b,众数为c,则有( )
A.a>b>c
B.b>c>a
C.c>a>b
D.c>b>a
先后抛掷骰子三次,则至少一次正面朝上的概率是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
某企业有职150人,其中高级职15人,中级职45人,一般职90人,现抽30人进行分层抽样,则各职称人数分别为( )
A.5,10,15
B.3,9,18
C.3,10,17
D.5,9,16
在△ABC中,若(b+c)2-a2=3bc,则角A=( )
A.30°
B.60°
C.120°
D.150°
当a=3时,如图的程序段输出的结果是( )
manfen5.com 满分网
A.9
B.3
C.10
D.6
数列1,3,6,10,…的一个通项公式an=( )
A.n2-n+1
B.manfen5.com 满分网
C.manfen5.com 满分网
D.2n+1-3
已知椭圆manfen5.com 满分网与直线l:mx-y-m=0
(1)求证:对于m∈R,直线l与椭圆C总有两个不同的交点;
(2)设直线l与椭圆C交于A、B两点,若|AB|=manfen5.com 满分网,求直线l的倾斜角.
平面内动点M与点P1(-2,0),P2(2,0),所成直线的斜率分别为k1、k2,且满足manfen5.com 满分网
(Ⅰ)求点M的轨迹E的方程,并指出E的曲线类型;
(Ⅱ)设直线:l:y=kx+m(k>0,m≠0)分别交x、y轴于点A、B,交曲线E于点C、D,且|AC|=|BD|.
(1)求k的值;
(2)若点manfen5.com 满分网,求△NCD面积取得最大时直线l的方程.
已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0,m∈R
(1)直线l是否过定点,有则求出来?判断直线与圆的位置关系及理由?
(2)求直线被圆C截得的弦长最小时l的方程.
(A题) (奥赛班做)有三个信号监测中心A、B、C,A位于B的正东方向,相距6千米,C在B的北偏西30°,相距4千米.在A测得一信号,4秒后,B、C才同时测得同一信号,试建立适当的坐标系,确定信号源P的位置(即求出P点的坐标).(设该信号的传播速度为1千米/秒,图见答卷)
已知抛物线x2=2py(p>0)上一点P(x,1)到焦点F的距离为2,
(1)求抛物线的方程;
(2)过点F的动直线l交抛物线于A、B两点,求弦AB中点Q的轨迹方程.
已知椭圆的准线平行于x轴,长轴长是短轴长的3倍,且过点(2,3).
(Ⅰ)求椭圆的离心率; 
(Ⅱ)求椭圆的标准方程,并写出准线方程.
manfen5.com 满分网正方体ABCD-A1B1C1D1中,点E、F分别是侧面对角线AB1、BC1的中点,
(1)求证:EF∥平面ABCD
(2)求两条异面直线AB1与BC1所成的角.
Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.