已知{an}是首项为19,公差为-4的等差数列,Sn为{an}的前n项和.
(Ⅰ)求通项an及Sn
(Ⅱ)设{bn-an}是首项为1,公比为2的等比数列,求数列{bn}的通项公式及其前n项和Tn
【解析图片】已知数列{an}与圆C1:x2+y2-2anx+2an+1y-1=0和圆C2:x2+y2+2x+2y-2=0,若圆C1与圆C2交于A,B两点且这两点平分圆C2的周长.
(1)求证:数列{an}是等差数列;
(2)若a1=-3,则当圆C1的半径最小时,求出圆C1的方程.
已知数列{an}的前n项和为manfen5.com 满分网
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=log4an,求b1+b2+…+bn的值.
若对任意x∈(1,3)的实数,使得不等式2x3+3x2≥6(6x+a)恒成立,求实数a的取值范围.
曲线y=manfen5.com 满分网在点(3,2)处的切线与直线ax+y+1=0垂直,则a的值为    
已知不等式x2+ax+4<0的解集不是空集,则实数a的取值范围是   
函数manfen5.com 满分网的值域为   
不等式x2<x的解集是   
函数f(x)=ex+x-2的零点所在的一个区间是( )
A.(-2,-1)
B.(-1,0)
C.(0,1)
D.(1,2)
函数f(x)对任意的x∈R,恒有f(x+2)=-f(x),且f(1)=2,则f(11)=( )
A.-2
B.2
C.0
D.1
若定义在R上的二次函数f(x)=ax2-4ax+b在区间[0,2]上是增函数,且f(m)≥f(0),则实数m的取值范围是( )
A.0≤m≤4
B.0≤m≤2
C.m≤0
D.m≤0或m≥4
在等比数列{an}中,a1=8,a4=64,,则公比q为( )
A.2
B.3
C.4
D.8
已知函数f(x)图象的两条对称轴x=0和x=1,且在x∈[-1,0]上f(x)单调递增,设a=f(3),manfen5.com 满分网,c=f(2),则a,b,c的大小关系是( )
A.a>b>c
B.a>c>b
C.b>c>a
D.c>b>a
已知manfen5.com 满分网,则f(3)=( )
A.3
B.2
C.1
D.4
设等比数列{an}的公比q=2,前n项和为Sn,若S4=1,则S8=( )
A.17
B.manfen5.com 满分网
C.5
D.manfen5.com 满分网
已知manfen5.com 满分网 的解集为( )
A.(-1,0)∪(0,e)
B.(-∞,-1)∪(e,+∞)
C.(-1,0)∪(e,+∞)
D.(-∞,1)∪(0,e)
已知等差数列﹛an﹜中,a3=5,a15=41,则公差d=( )
A.4
B.3
C.5
D.2
若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( )
A.f(x)与g(x)均为偶函数
B.f(x)为奇函数,g(x)为偶函数
C.f(x)与g(x)均为奇函数
D.f(x)为偶函数,g(x)为奇函数
在等差数列40,37,34,…中第一个负数项记为ak,则k=( )
A.14
B.13
C.15
D.12
集合A={-1,0,1},B={y|y=cosx,x∈A},则A∩B=( )
A.{0}
B.{1}
C.{0,1}
D.{-1,0,1}
设椭圆C:manfen5.com 满分网的离心率为e=manfen5.com 满分网,点A是椭圆上的一点,且点A到椭圆C两焦点的距离之和为4.
(1)求椭圆C的方程;
(2)椭圆C上一动点P(x,,y)关于直线y=2x的对称点为manfen5.com 满分网,求3x1-4y1的取值范围.
在平面直角坐标系xOy中,点P到两点manfen5.com 满分网manfen5.com 满分网的距离之和等于4,设点P的轨迹为C.
(Ⅰ)写出C的方程;
(Ⅱ)设直线y=kx+1与C交于A,B两点.k为何值时manfen5.com 满分网manfen5.com 满分网?此时manfen5.com 满分网的值是多少?.
如图所示,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,BC=1,manfen5.com 满分网,D是棱CC1的中点.
(Ⅰ)证明:A1D⊥平面AB1C1
(Ⅱ)求二面角B-AB1-C1的余弦值.

manfen5.com 满分网
manfen5.com 满分网如图,在长方体ABCD-A1B1C1D1中,AB=BC=1,BB1=2,E是棱CC1上的点,且manfen5.com 满分网
(1)求三棱锥C-BED的体积;
(2)求证:A1C⊥平面BDE.
已知点M(1,-1),N(1,5),P(-2,2)都在圆C上,求圆C的方程.
已知直线l经过直线6x-y+3=0和3x+5y-4=0的交点,且与直线2x+y-5=0垂直,求直线l的方程.
正方体ABCD-A1B1C1D1的棱长为1,若E、F分别是BC、DD1的中点,则B1到平面ABF的距离为   
以原点为顶点,坐标轴为对称轴,并且过点P(-2,-4)的抛物线标准方程为   
已知向量manfen5.com 满分网则它与x轴正方向夹角的余弦值为   
一个体积为8的正方体的顶点都在一个球面上,则此球的表面积是   
Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.