已知函数manfen5.com 满分网.(k∈R且k>0).
(1)求函数f(x)的定义域;
(2)若函数f(x)在[10,+∞)上单调递增,求k的取值范围.
在矩形ABCD中,已知AB=a,BC=b(a>b),在AB、AD、CD、CB上分别截取AE、AH、CG、CF都等于x,
(1)将四边形EFGH的面积S表示成x的函数,并写出函数的定义域;
(2)当x为何值时,四边形EFGH的面积最大?并求出最大面积.

manfen5.com 满分网
如图,在正三棱柱ABC-A1B1C1中,点D在边BC上,AD⊥C1D.
(Ⅰ)求证:AD⊥平面BC C1B1
(Ⅱ)设E是B1C1上的一点,当manfen5.com 满分网的值为多少时,A1E∥平面ADC1?请给出证明.

manfen5.com 满分网
在△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,且cosB=manfen5.com 满分网
(1)若manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网,求a+c的值;
(2)求manfen5.com 满分网+manfen5.com 满分网的值.
已知命题p:指数函数f(x)=(2a-6)x在R上单调递减,命题q:关于x的方程x2-3ax+2a2+1=0的两个实根均大于3.若p或q为真,p且q为假,求实数a的取值范围.
已知f(x)=|x2-4|+x2+kx,若f(x)在(0,4)上有两个不同的零点x1,x2,则k的取值范围是   
等腰三角形ABC的腰AB上的中线CD的长为2,则△ABC周长的最大值   
已知a≥0,若函数manfen5.com 满分网在[-1,1]上的最大值为2,则实数a的值为   
下列几个命题:
①关于x的不等式manfen5.com 满分网在(0,1)上恒成立,则a的取值范围为(-∞,1]; 
②函数y=log2(-x+1)+2的图象可由y=log2(-x-1)-2的图象向上平移4个单位,向右平移2个单位得到;
③若关于x方程|x2-2x-3|=m有两解,则m=0或m>4;
④若函数f(2x+1)是偶函数,则f(2x)的图象关于直线x=manfen5.com 满分网对称.
其中正确的有   
在△ABC中,角A,B,C所对的边长分别为a,b,c,若manfen5.com 满分网,则角B的值为   
已知α,β为锐角,且manfen5.com 满分网manfen5.com 满分网,则sin(α+β)=   
如果函数 manfen5.com 满分网是奇函数,则f(x)=   
函数f(x)=ln(4+3x-x2)的单调递减区间是   
设a,b为不重合的两条直线,α,β为不重合的两个平面,给出下列命题:
(1)若a∥α且b∥α,则a∥b;
(2)若a⊥α且a⊥β,则α∥β;
(3)若α⊥β,则一定存在平面γ,使得γ⊥α,γ⊥β;
(4)若α⊥β,则一定存在直线l,使得l⊥α,l∥β.
上面命题中,所有真命题的序号是   
已知f(x)=manfen5.com 满分网,不等式f(x)≥-1的解集是   
函数manfen5.com 满分网的值域是   
已知集合A={3,m2},B={-1,3,3m-2},若A∩B=A,则实数m的值为   
“x>1”是“x2>x”成立的    条件( 填“充分不必要”、“必要不充分条件”、“充要”、“既不充分又不必要”之一).
命题p:∀x∈R,2x2+1>0的否定是   
已知函数f(x)=ax3+x2-ax,a,x∈R
(1)讨论函数manfen5.com 满分网的单调区间;
(2)如果存在a∈[-2,-1],使函数h(x)=f(x)+f′(x),x∈[-1,b](b>-1)在x=-1处取得最小值,试求b的最大值.
在直角坐标系xoy上取两个定点A1(-2,0),A2(2,0),再取两个动点N1(0,m),N2(0,n),且mn=3.
(1)求直线A1N1与A2N2交点的轨迹M的方程;
(2)已知点A(1,t)(t>0)是轨迹M上的定点,E,F是轨迹M上的两个动点,如果直线AE的斜率kAE与直线AF的斜率kAF满足kAE+kAF=0,试探究直线EF的斜率是否是定值?若是定值,求出这个定值,若不是,说明理由.
已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图所示. 
(1)当a=2时,求证:AO⊥平面BCD;
(2)当二面角A-BD-C的大小为120°时,求二面角A-BC-D的正切值.

manfen5.com 满分网
已知等比数列{an}满足2a1+a3=3a2,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若manfen5.com 满分网,Sn=b1+b2+…bn,求使 manfen5.com 满分网 成立的正整数n的最小值.
已知函数f(x)=manfen5.com 满分网
(Ⅰ) 求函数f(x)的最小值和最小正周期;
(Ⅱ)已知△ABC内角A,B,C的对边分别为a,b,c,且c=3,f(C)=0,若向量manfen5.com 满分网manfen5.com 满分网共线,求a,b的值.
抛物线x2=8y的准线与y轴交于点A,点B在抛物线对称轴上,过A可作直线交抛物线于点M、N,使得manfen5.com 满分网=-manfen5.com 满分网,则|manfen5.com 满分网|的取值范围是   
manfen5.com 满分网
给定两个长度为1的平面向量manfen5.com 满分网manfen5.com 满分网,它们的夹角θ=60°,如图所示,点C在以O为圆心的圆弧manfen5.com 满分网上变动.若manfen5.com 满分网,其中x,y∈R,则x+y的最大值是   
manfen5.com 满分网
已知关于x的方程x2+(1+a)x+1+a+b=0(a,b∈R)的两根分别为x1、x2,且0<x1<1<x2,则manfen5.com 满分网的取值范围是   
在4名男生3名女生中,选派3人作为“保钓活动”的志愿者,要求既有男生又有女生,且男生甲和女生乙至多只能一人参加,则不同的选派方法有    _种(用数作答)
若f(x)=2cos(wx+φ)+m(m>0),对任意实数t都有manfen5.com 满分网,且manfen5.com 满分网,则实数m的值等于   
manfen5.com 满分网的展开式中的常数项为manfen5.com 满分网,则实数a   
Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.