|
为了解某住宅区的家庭用水量情况,从该住宅区中随机抽样调查了50户家庭去年每个月的用水量,统计得到的数据绘制了下面的两幅统计图.图1是去年这50户家庭月总用水量的折线统计图,图2是去年这50户家庭月总用水量的不完整的频数分布直方图.
(1)根据图1提供的信息,补全图2中的频数分布直方图; (2)在抽查的50户家庭去年月总用水量这12个数据中,极差是____ (3)请你根据上述提供的统计数据,估计该住宅区今年每户家庭平均每月的用水量是多少
为了美化都匀市环境,打造中国优秀旅游城市,现欲将剑江河进行清淤疏通改造,现有两家清淤公司可供选择,这两家公司提供信息如表所示:
(1)若剑江河首批需要清淤的淤泥面积大约为1.2万平方米,平均厚度约为0.4米,那么请哪个清淤公司进行清淤费用较省,请说明理由(体积可按面积×高进行计算) (2)若甲公司单独做了2天,乙公司单独做了3天,恰好完成全部清淤任务的一半;若甲公司先做2天,剩下的清淤工作由乙公司单独完成,则乙公司所用时间恰好比甲公司单独完成清淤任务所用时间多1天,则甲、乙两公司单独完成清淤任务各需多少时间?
北京时间2011年3月11日46分,日本东部海域发生9级强烈地震并引发海啸.在其灾区,某药品的需求量急增.如图所示,在平常对某种药品的需求量y1(万件).供应量y2(万件)与价格x(元∕件)分别近似满足下列函数关系式: (1)求该药品的稳定价格与稳定需求量. (2)价格在什么范围内,该药品的需求量低于供应量? (3)由于该地区灾情严重,政府部门决定对药品供应方提供价格补贴来提高供货价格,以提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.
(1)
(2)解不等式组
某省将为义务教育阶段的贫困学生免费发放教科书,预计发放总量为1500万册,发放总量用科学记数法记为________万册(保留3个有效数字).
如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数
如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.若BC=1,AC=
函数
已知:
三角形两边长分别为3和6,第三边是方程 A、11 B、13 C、11或13 D、不能确定
objWord.Quit(ref saveOption, ref missing, ref missing); GC.Collect(); 将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积.则这样的折纸方法共有( ) A、1种 B、2种 C、4种 D、无数种 王芳同学为参加学校组织的科技知识竞赛,她周末到新华书店购买资料.如图,是王芳离家的距离与时间的函数图象.若黑点表示王芳家的位置,则王芳走的路线可能是( )
二次函数 A、1
B、
有一个数值转换器,原理如下:
当输入的 A、2
B、8 C、 估计20的算术平方根的大小在( ) A、2与3之间 B、3与4之间 C、4与5之间 D、5与6之间
观察下列算式: A、2 B、4 C、8 D、6
如图,△ABC中,AB=AC=6,BC=8,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是( ) A、
下列函数:① A、1个 B、2个 C、3个 D、4个
在平面直角坐标系中,设点P到原点O的距离为p,OP与x轴正方向的夹角为a,则用[p,α]表示点P的极坐标,显然,点P的极坐标与它的坐标存在一一对应关系.例如:点P的坐标为(1,1),则其极坐标为[ A、(2,
下列命题中,真命题是( ) A、对角线互相垂直且相等的四边形是正方形 B、等腰梯形既是轴对称图形又是中心对称图形 C、圆的切线垂直于经过切点的半径 D、垂直于同一直线的两条直线互相垂直
A、3 B、±3 C、
(11·西宁)(本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C为
(-1,0) .如图17所示,B点在抛物线 (1)求证:△BDC≌△COA; (2)求BC所在直线的函数关系式; (3)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.
(11·西宁)(本小题满分10分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售. (1)求平均每次下调的百分率; (2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择: ① 打9.8折销售;② 不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?
(11·西宁)(本小题满分10分)已知:如图,BD为⊙O的直径,AB=AC,AD交BC与E,AE=2,ED=4. (1)求证:△ABE∽△ADB; (2)求AB的长; (3)延长DB到F,使BF=OB,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.
(11·西宁)(本小题满分8分)如图15,阅读对话,解答问题.
盒子中有三个除数字外完全相同的小球—1,1,2. 小兵:我蒙上眼睛,先从盒子中摸出一个小球(摸出后不放回),用P表示我摸出小球上标有的数字. 小红:你摸出后,我也蒙上眼睛,再从盒子中摸出一个小球,用Q表示我摸出小球上标有的数字. (1)试用树形图或列表法写出满足关于x的方程x2+px+q=0的所有等可能结果; (2)求(1)中方程有实数根的概率.
(11·西宁)(本小题满分8分)国家教育部规定“中小学生每天在校体育活动时间不少于1小时”.西宁市某中学为了了解学生体育活动的情况,随机抽查了520名毕业班学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”.以下是根据所得的数据制成的统计图的一部分. 根据以上信息,解答下列问题: (1)随机抽查的学生中每天在校锻炼时间超过1小时的人数是_ ▲ ; (2)请将图14补充完整; (3)2011年我市初中应届毕业生约为11000人,请你估计今年全市初中应届毕业生中每天锻炼时间超过1小时的学生约有多少人?
11·西宁)(本小题满分8分)如图12 ,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD. (1)求证:四边形AODE是菱形; (2).若将题设中“矩形ABCD”这一条件改为“菱形ABCD”, 其余条件不变,则四边形AODE是_ ▲ .
(11·西宁)(本小题满分7分)给出三个整式a2,b2和2ab. (1)当a=3,b=4时,求a2+b2+2ab的值; (2)在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解.请写也你所选的式子及因式分解的过程.
(11·西宁)(本小题满分7分)计算:()-3+(-2011)0-|(-2)3|.
|