|
已知二次函数y=x2+bx+c的图像与x轴的两个交点的横坐标分别为x1、x2,一元二次方程x2+b2x+20=0的两实根为x3、x4,且x2-x3=x1-x4=3,求二次函数的解析式,并写出顶点坐标。
抛物线y=-(x-L)(x-3-k)+L与抛物线y=(x-3)2+4关于原点对称,则L+k=________。
炮弹从炮口射出后,飞行的高度h(m)与飞行的时间t(s)之间的函数关系是h=v0tsinα—5t2,其中v0是炮弹发射的初速度, α是炮弹的发射角,当v0=300(
已知二次函数y=x2+bx+c的图像过点A(c,0),且关于直线x=2对称,则这个二次函数的解析式可能是_____________________________________.(只要写出一个可能的解析式)
老师给出一个函数,甲,乙,丙,丁四位同学各指出这个函数的一个性质: 甲:函数的图像不经过第三象限。乙:函数的图像经过第一象限。 丙:当x<2时,y随x的增大而减小。丁:当x<2时,y>0, 已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数___________________。
如图(5),A、B、C是二次函数y=ax2+bx+c(a≠0)的图像上三点,根据图中给出的三点的位置,可得a_______0,c________0, ⊿________0.
有一个抛物线形拱桥,其最大高度为16m,跨度为40m,现把它的示意图放在平面直角坐标系中如 图(4),求抛物线的解析式是_______________。
已知二次函数
已知二次函数y=-4x2-2mx+m2与反比例函数y=
已知二次函数y=ax2(a≥1)的图像上两点A、B的横坐标分别是-1、2,点O是坐标原点,如果△AOB是直角三角形,则△OAB的周长为 __ 。
设x、y、z满足关系式x-1=
如图,已知点M(p,q)在抛物线y=x2-1上,以M为圆心的圆与x轴交于A、B两点,且A、B两点的横坐标是关于x的方程x2-2px+q=0的两根,则弦AB的长等于 。
不论x为何值,函数y=ax2+bx+c(a≠0)的值恒大于0的条件是( ) A.a>0,△>0; B.a>0, △<0; C.a<0, △<0; D.a<0, △<0
当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax2+bx+c的是( )
已知二次函数
若 (A)第一象限;(B)第二象限;(C)第三象限;(D)第四象限
(3)已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过( ) A.一、二、三象限 ; B.一、二、四象限;C.一、三、四象限; D.一、二、三、四象限.
把二次函数 (A) (C)
烟花厂为扬州三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度 (A)
抛物线 (A) (C)
二次函数 (A)
若A( (A)
已知二次函数y=ax2+bx的图象经过点A(-1,1),则ab有 ( ) (A)最小值0; (B)最大值 1;
(C)最大值2; (D)有最小值
对于抛物线 (A)开口向下,顶点坐标 (C)开口向下,顶点坐标
抛物线 (A)直线
(本题满分12分)如图,在Rt△ABC中,∠B=90°,AB=1,BC= 为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E. (1)求AE的长度; (2)分别以点A、E为圆心,AB长为半径画弧,两弧交于点F(F与C在AB两侧),连接AF、EF,设EF交弧DE所在的圆于点G,连接AG,试猜想∠EAG的大小,并说明理由.
(本题满分12分)如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,设DQ=t(0≤t≤2),线段PQ的垂直平分线分别交边AD、BC于点M、N,过Q作QE⊥AB于点E,过M作MF⊥BC于点F. (1)当t≠1时,求证:△PEQ≌△NFM; (2)顺次连接P、M、Q、N,设四边形PMQN的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.
(本题满分10分)如图,在平面直角坐标系中,O为坐标原点,P是反比例函数 y= B. (1)判断P是否在线段AB上,并说明理由; (2)求△AOB的面积; (3)Q是反比例函数y= 半径画圆与x、y轴分别交于点M、N,连接AN、MB.求证:AN∥MB.
(本题满分10分)某通讯公司推出①、②两种通讯收费方式供用户选择,其中一
的函数关系如图所示. (1)有月租费的收费方式是 (填①或②), 月租费是 元; (2)分别求出①、②两种收费方式中y与自 变量x之间的函数关系式; (3)请你根据用户通讯时间的多少,给出 经济实惠的选择建议.
(本题满分10分)在一个不透明的布袋中装有相同的三个小球,其上面分别标注 数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回 袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标. (1)写出点M坐标的所有可能的结果; (2)求点M在直线y=x上的概率; (3)求点M的横坐标与纵坐标之和是偶数的概率.
|