|
如图所示,在
若抛物线
将二次函数
.二次函数
.2
.化简
使
.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两点, 且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=
.已知,二次函数 A.-1 B.1 C.-3 D.-4
.如图,顺次连结圆内接矩形各边的中点,得到菱形ABCD,若BD=6,DF=4,则菱形ABCD的边长为
A.4
.Rt△ABC中,∠C=90°, A. C.
.若关于 A.-1 B.
.小明用一个半径为5 A.3
.如图,A,D是⊙
A.35° B.55° C.65° D.70°
若两圆的半径分别是1cm和5cm,圆心距为6cm,则这两圆的位置关系是 A.内切 B.相交 C.外切 D.外离
.已知在 A.
.下列函数的图象,经过原点的是 A.
如图1,在平面直角坐标系xoy中,Rt△AOB的斜边OB在x轴上,其中∠ABO=30°,OB=4。
1. ⑴直接写出,Rt△AOB的内心和P的坐标; 2.⑵如图2,若将Rt△AOB绕其直角顶点A顺时针旋转α度(0°<α<90°),得到Rt△ACD,直角边AD与x轴相交于点N,直角边AC与y轴相交于点M,连结MN。设△MON的面积为S△MON,△AOB的面积为S△AOB,以点M为圆心,MO为半径作⊙M, ①当直线AD与⊙M相切时,试探求S△MON与S△AOB之间的关系。 ②当S△MON=
已知:正方形ABCD的边长为4,⊙O交正方形ABCD的对角线AC所在直线于点T,连接TO交⊙O于点S。
1. ⑴如图1,当⊙O经过A、D两点且圆心O在正方形ABCD内部时,连结DT、DS。 ①试判断线段DT、DS的数量关系和位置关系; ②求AS+AT的值; 2.⑵如图2,当⊙O经过A、D两点且圆心O在正方形ABCD外部时,连结DT、DS。 求AS—AT的值。 3.⑶如图3,延长DA到点E,使AE=AD,当⊙O经过A、E两点时,连结ET、ES。根据⑴、⑵计算,通过观察、分析,对线段AS、AT的数量关系提出问题并解答。
某学校计划利用一片空地建一个学生自行车车棚,自行车车棚为矩形,其中一面靠墙,这堵墙的长度为12米,另二面墙用现有的木板材料围成,总长为26米,且计划建造车棚的面积为80平方米。
1. ⑴如图1,为了方便学生出行,学校决定在与墙平行的一面开一个2米宽的门,那么这个车棚的长和宽分别应为多少米? 2.⑵如图2,为了方便学生取车,施工单位又决定在车棚内修建三条等宽的小路(小路垂直或平行于墙),使得停放自行车的面积为54平方米,那么小路的宽度是多少米?
我市一家电子计算器专卖店每只进价13元,售价20元,为了扩大销售,该店现规定,凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元。问一次卖多少只获得的利润为120元?
如图,在⊙O中,直径AB垂直于弦CD,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线FC与直线AB相交于点G。
1.⑴直线FC与⊙O有何位置关系?并说明理由; 2.⑵若OB=BG=2,求CD的长。
关于x的一元二次方程 1. ⑴若方程有两个不相等的实数根,求k的取值范围; 2.⑵当k是怎样的正整数方程没有实数根?
某工厂甲、乙两名工人参加操作技能培训。现分别从他们在培训期间参加的若干次测试成绩中随机抽取6次,记录如下:
1. ⑴请你计算这两组数据的平均数; 2.⑵现要从中选派一人参加操作技能比赛,从成绩的稳定性考虑,你认为选派哪名工人参加合适?请说明理由。
如图,一条公路的转弯处是一段圆弧(图中
如图,AB、AC为⊙O的弦,连接CO、BO并延长分别交弦AB、AC于点E、F,∠B=∠C。问:线段CE和线段BF相等吗?请说明理由。
解方程: 1.⑴ 2.⑵
在⊙O中,弦AB将圆分成了1:4两部分,点D是⊙O上一点(不与A、B重合),过点D作DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C,则∠C=___________。
如图,在△ABC中,∠C=90°,点O在BC上,以OC为半径的半圆切AB于点E,交BC于点D,若BE=4,BD=2,则AC=___________。
如图,点O为优弧ACB所在圆的圆心,∠AOC=108°,点D在AB的延长线上,BD=BC,则∠D=___________。
|