两圆的半径分别为2和1,圆心距为3,则反映这两圆位置关系的为图( )
A. ![]() B. ![]() C. ![]() D. ![]() 已知⊙O1的半径是4cm,⊙O2的半径是2cm,O1O2=5cm,则两圆的位置关系是( )
A.外离 B.外切 C.相交 D.内含 如果两圆半径分别为3和4,圆心距为8,那么这两圆的位置关系是( )
A.内切 B.相交 C.外离 D.外切 已知两圆的半径分别为2和6,圆心距为5,则这两圆的位置关系是( )
A.内切 B.相交 C.外切 D.外离 已知两圆的半径为1和4,圆心距为5,则两圆的位置关系为( )
A.外离 B.外切 C.相交 D.内切 已知两圆的半径分别为R和r(R>r),圆心距为d.如图,若数轴上的点A表示R-r,点B表示R+r,当两圆外离时,表示圆心距d的点D所在的位置是( )
![]() A.在点B右侧 B.与点B重合 C.在点A和点B之间 D.在点A左侧 如图,⊙O1的半径为4,⊙O2的半径为1,O1O2=6,P为⊙O2上一动点,过P点作⊙O1的切线,则切线长最短为( )
![]() A. ![]() B.5 C.3 D. ![]() 如图,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC内部沿顺时针方向滚动,且运动过程中⊙P一直保持与△ABC的边相切,当点P第一次回到它的初始位置时所经过路径的长度是( )
![]() A. ![]() B.25 C. ![]() D.56 下列命题中,真命题的个数为( )
①对角线互相垂直平分且相等的四边形是正方形 ②如果四边形的两条对角线互相垂直,那么它的面积等于两条对角线长的积的一半 ③在一个圆中,如果弦相等,那么所对的圆周角相等 ④已知两圆半径分别为5,3,圆心距为2,那么两圆内切. A.1 B.2 C.3 D.4 两圆圆心都在y轴上,且两圆相交于A、B两点,点A的坐标为(2,1),则B点的坐标为( )
A.(-2,1) B.(-2,-1) C.(2,-1) D.(O,1) 某新建小区要在一块等边三角形的公共区域内修建一个圆形花坛.
(1)若要使花坛面积最大,请你在这块公共区域(如图)内确定圆形花坛的圆心P; (2)若这个等边三角形的边长为18米,请计算出花坛的面积. ![]() 阅读材料:如图(一),△ABC的周长为l,内切圆O的半径为r,连接OA、OB、OC,△ABC被划分为三个小三角形,用S△ABC表示△ABC的面积.
![]() ∵S△ABC=S△OAB+S△OBC+S△OCA 又∵S△OAB= ![]() ![]() ![]() ∴S△ABC= ![]() ![]() ![]() ![]() (1)理解与应用:利用公式计算边长分为5、12、13的三角形内切圆半径; (2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图(二))且面积为S,各边长分别为a、b、c、d,试推导四边形的内切圆半径公式; (3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1、a2、a3、…、an,合理猜想其内切圆半径公式(不需说明理由). 为了探索三角形的内切圆半径r与周长L、面积S之间的关系,在数学实验活动中,选取等边三角形(图甲)和直角三角形(图乙)进行研究.如图,⊙O是△ABC的内切圆,切点分别为点D、E、F.
![]() (1)用刻度尺分别量出表中未度量的△ABC的长,填入空格处,并计算出周长L和面积S.(结果精确到0.1厘米)
如图,在△ABC中,AB=AC,内切圆O与边BC、AC、AB分别切于D、E、F.
(1)求证:BF=CE; (2)若∠C=30°,CE=2 ![]() ![]() 如图①,△ABC内接于⊙O,点P是△ABC的内切圆的圆心,AP交边BC于点D,交⊙O于点E,经过点E作⊙O的切线分别交AB、AC延长线于点F、G.
(1)求证:BC∥FG; (2)探究:PE与DE和AE之间的关系; (3)当图①中的FE=AB时,如图②,若FB=3,CG=2,求AG的长. ![]() 如图,⊙O是△ABC的内切圆,与AB、BC、CA分别相切于点D、E、F,∠DEF=45度.连接BO并延长交AC于点G,AB=4,AG=2.
(1)求∠A的度数; (2)求⊙O的半径. ![]() 如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是
![]() (1)求弦AB的长; (2)判断∠ACB是否为定值?若是,求出∠ACB的大小;否则,请说明理由; (3)记△ABC的面积为S,若 ![]() ![]() ![]() 如图,有一块三角形材料(△ABC),请你画出一个圆,使其与△ABC的各边都相切.
![]() 如图,AC是⊙O的直径,BC切⊙O于点C,AB交⊙O于点D,连接DO,并延长交BC的延长线于点E.过D作⊙O的切线交BC于点F.
(Ⅰ)求证:F是BC的中点; (Ⅱ)若BC=2,且S△DBF:S△DCE=3:2,求AD:DB的值. ![]() 如图1,A为⊙O的弦EF上的一点,OB是和这条弦垂直的半径,垂足为H,BA的延长线交⊙O于点C,过点C作⊙O的切线与EF的延长线相交于点D.
(1)求证:DA=DC; (2)当DF:EF=1:8,且DF= ![]() (3)将图1中的EF所在直线往上平行移动到⊙O外,如图2的位置,使EF与OB,延长线垂直,垂足为H,A为EF上异于H的一点,且AH小于⊙O的半径,AB的延长线交⊙O于C,过C作⊙O的切线交EF于D.试猜想DA=DC是否仍然成立?并证明你的结论. ![]() 如图,⊙O的直径AB=10,弦DE⊥AB于点H,AH=2.
(1)求DE的长; (2)延长ED到P,过P作⊙O的切线,切点为C,若PC=2 ![]() ![]() 如图,PA是⊙O的切线,切点为A,割线PCB交⊙O于C、B两点,半径OD⊥BC,垂足为E,AD交PB于点F.
(1)PA与PF是否相等?______(填“是”或“否”); (2)若F是PB的中点,CF=1.5,则切线PA的长为______. ![]() 已知:如图,BD是⊙O的直径,过圆上一点A作⊙O的切线交DB的延长线于P,过B点作BC∥PA交⊙O于C,连接AB、AC.
(1)求证:AB=AC; (2)若PA=10,PB=5,求⊙O的半径和AC的长. ![]() ![]() (1)求证:AD∥BC; (2)求证:MF2=AF•BF; (3)如果⊙O1的直径长为8,tan∠ACB= ![]() 如图,在以O为圆心的两个同心圆中,小圆的半径长为2,大圆的弦AB与小圆交于点C、D,且AB=3CD,∠COD=60°.
(1)求大圆半径的长; (2)若大圆的弦AE与小圆切于点F,求AE的长. ![]() 如图.⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,B、C为切点,求证:AB⊥AC.
![]() 如图,已知⊙O与CA、CB相切于点A、B,OA=OB=2
![]() ![]() 如图,已知:AB是定圆的直径,O是圆心,点C在⊙O的半径AO上运动,PC⊥AB交⊙O于E,交AB于C,PC=5.PT是⊙O的切线(T为切点).
(1)当CE正好是⊙O的半径时,PT=3,求⊙O的半径; (2)当C点与A点重合时,求CT的长; (3)设PT2=y,AC=x,写出y关于x的函数关系式,并确定x的取值范围. ![]() 已知:如图,AB是⊙O1与⊙O2的公共弦,过B点的直线CD分别交⊙O1于C点,交⊙O2于D点,∠BAD的平分线AM交⊙O1于E点,交直线CD于F点,交⊙O2于M点.
(1)连接DM、CE,请在图中(不添加别的“点”和“线”)找出与△DFM相似的所有三角形,并选择其中一个三角形,证明它与△DFM相似; (2)设CD=12,CB=5,DF=4,AF=3FM,求EF的长. ![]() 如图,A,B,D,E四点在⊙O上,AE,BD的延长线相交于点C,直径AE为8,OC=12,∠EDC=∠BAO.
(1)求证: ![]() (2)计算CD•CB的值,并指出CB的取值范围. ![]() |