满分5 > 初中数学试题 >

已知:如图,⊙O1与⊙O2外切于M点,AF是两圆的外公切线,A、B是切点,DF经...

manfen5.com 满分网已知:如图,⊙O1与⊙O2外切于M点,AF是两圆的外公切线,A、B是切点,DF经过O1、O2,分别交⊙O1于D、⊙O2于E,AC是⊙O1的直径,BC经过M点,连接AD.
(1)求证:AD∥BC;
(2)求证:MF2=AF•BF;
(3)如果⊙O1的直径长为8,tan∠ACB=manfen5.com 满分网,求⊙O2的直径长.
(1)根据同弧的圆周角相等,先证∠ADM=∠ACB,再证△O1AD为等腰三角形,根据等量代换可证∠DAC=∠ACB,即可证得. (2)要证结论,必先证△AMF∽△MBF,根据切线定理,即可证得∠ADO1=∠MAB,又在第1问的基础上进行等量代换,就可证得AAA. (3)由切割线定理和勾股定理多次结合使用,即可求得. (1)证明:∵∠DO1A=∠CO1M,O1A=O1D=O1C=O1M ∴∠ADO1=∠O1MC=∠DAO1=∠O1CM(1分) ∴DA∥CM(2分) (2)证明:连接AM,(3分) ∵∠BME=∠O1MC 又∵∠O1MC=∠ADO1∴∠BME=∠ADO1 又∵AB切⊙O1于A ∴∠ADO1=∠MAB ∴∠MAB=∠BME∠F=∠F ∴△MBF∽△AMF(4分) ∴ 即:MF2=AF•BF(5分) (3)【解析】 在Rt△ACB中, ∵tan∠ACB= 又∵AC=8 ∴AB=6(6分) ∵BC==10 ∵AB2=BM•BC ∴62=BM×10 ∴BM=3.6(7分) 又∵∠ACB=∠BME ∴tan∠BME= ∴BE=2.7(8分) ∴ME==4.5(9分).
复制答案
考点分析:
相关试题推荐
如图,在以O为圆心的两个同心圆中,小圆的半径长为2,大圆的弦AB与小圆交于点C、D,且AB=3CD,∠COD=60°.
(1)求大圆半径的长;
(2)若大圆的弦AE与小圆切于点F,求AE的长.

manfen5.com 满分网 查看答案
如图.⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,B、C为切点,求证:AB⊥AC.

manfen5.com 满分网 查看答案
如图,已知⊙O与CA、CB相切于点A、B,OA=OB=2manfen5.com 满分网cm,AB=6 cm,求∠ACB的度数.

manfen5.com 满分网 查看答案
如图,已知:AB是定圆的直径,O是圆心,点C在⊙O的半径AO上运动,PC⊥AB交⊙O于E,交AB于C,PC=5.PT是⊙O的切线(T为切点).
(1)当CE正好是⊙O的半径时,PT=3,求⊙O的半径;
(2)当C点与A点重合时,求CT的长;
(3)设PT2=y,AC=x,写出y关于x的函数关系式,并确定x的取值范围.

manfen5.com 满分网 查看答案
已知:如图,AB是⊙O1与⊙O2的公共弦,过B点的直线CD分别交⊙O1于C点,交⊙O2于D点,∠BAD的平分线AM交⊙O1于E点,交直线CD于F点,交⊙O2于M点.
(1)连接DM、CE,请在图中(不添加别的“点”和“线”)找出与△DFM相似的所有三角形,并选择其中一个三角形,证明它与△DFM相似;
(2)设CD=12,CB=5,DF=4,AF=3FM,求EF的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.