圆心角都是90°的扇形OAB与扇形OCD如图所示那样叠放在一起,连接AC、BD.
(1)求证:△AOC≌△BOD;
(2)若OA=3cm,OC=1cm,求阴影部分的面积.

manfen5.com 满分网
如图,⊙O的半径等于1,弦AB和半径OC互相平分于点M.求扇形OACB的面积(结果保留π).

manfen5.com 满分网
如图,有一直径是1cm的圆形铁皮,要从中剪出一个最大的圆心角是90°的扇形CAB.
(1)被剪掉的阴影部分的面积是多少?
(2)若用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少(结果可用根号表示).

manfen5.com 满分网
如图,在一个横截面为Rt△ABC的物体中,∠CAB=30°,BC=1米.工人师傅把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1B1C1的位置(BC1在l上),最后沿BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).
(1)请直接写出AB、AC的长;
(2)画出在搬动此物的整个过程A点所经过的路径,并求出该路径的长度(精确到0.1米).

manfen5.com 满分网
某校研究性学习小组在研究相似图形时,发现相似三角形的定义、判定及其性质,可以拓展到扇形的相似中去.例如,可以定义:“圆心角相等且半径和弧长对应成比例的两个扇形叫做相似扇形”;相似扇形有性质:弧长比等于半径比、面积比等于半径比的平方….请你协助他们探索这个问题.
(1)写出判定扇形相似的一种方法:若______,则两个扇形相似;
(2)有两个圆心角相等的扇形,其中一个半径为a、弧长为m,另一个半径为2a,则它的弧长为______
(3)如图1是一完全打开的纸扇,外侧两竹条AB和AC的夹角为120°,AB为30cm,现要做一个和它形状相同、面积是它一半的纸扇(如图2),求新做纸扇(扇形)的圆心角和半径.

manfen5.com 满分网
如图,在相距60km的两个城镇A,B之间,有一近似圆形的湖泊,其半径为15km,圆心O恰好位于A,B连线的中点处.现要绕过湖泊从A城到B城,假设除湖泊外,所有的地方均可行走,如路线:线段manfen5.com 满分网线段DB,其中C,D在直线AB上.请你找出最短的行走路线,并求出这条路线的长度.(manfen5.com 满分网≈1.73,π≈3.14)

manfen5.com 满分网
如图,以AB为直径的半圆O上有一点C,过A点作半圆的切线交BC的延长线于点D.
(1)求证:△ADC∽△BDA;
(2)过O点作AC的平行线OF分别交BC,manfen5.com 满分网于E、F两点,若BC=2manfen5.com 满分网,EF=1,求manfen5.com 满分网的长.

manfen5.com 满分网
一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是平行的,且水平,BC与水平面的夹角为60°,其中AB=60cm,CD=40cmmanfen5.com 满分网,BC=40cm,请你作出该小朋友将圆盘从A点滚动到D点其圆心所经过的路线的示意图,并求出此路线的长度.
如图,ABCD是边长为1的正方形,其中manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网的圆心依次是A、B、C.
(1)求点D沿三条圆弧运动到点G所经过的路线长;
(2)判断直线GB与DF的位置关系,并说明理由.

manfen5.com 满分网
如图,AB是⊙O的直径,弦BC=5,∠BOC=50°,OE⊥AC,垂足为E.
(1)求OE的长;
(2)求劣弧AC的长.(结果精确到0.1)

manfen5.com 满分网
如图,已知BC是⊙O的直径,P是⊙O上一点,A是manfen5.com 满分网的中点,AD⊥BC于点D,BP与AD相交于点E,若∠ACB=36°,BC=10.
(1)求manfen5.com 满分网的长;
(2)求证:AE=BE.

manfen5.com 满分网
如图,扇形OBC是圆锥的侧面展开图,圆锥的母线OB=l,底面圆的半径HB=r.
(1)当l=2r时,求∠BOC的度数;
(2)当l=3r,l=4r时,分别求∠BOC的度数;(直接写出结果)
(3)当l=nr(n为大于1的整数)事,猜想∠BOC的度数(直接写出结果).

manfen5.com 满分网
如图,CD切⊙O于点D,连接OC,交⊙O于点B,过点B作弦,点E为垂足,已知⊙O的半径为10,sin∠COD=manfen5.com 满分网
(1)求弦AB的长;
(2)CD的长;
(3)劣弧AB的长(结果保留三个有效数字,sin53.13°≈0.8,π≈3.142).

manfen5.com 满分网
已知:如图,AB是⊙O的切线,切点为A,OB交⊙O于C且C为OB中点,过C点的弦CD使∠ACD=45°,manfen5.com 满分网的长为manfen5.com 满分网,求弦AD、AC的长.

manfen5.com 满分网
图中的粗线CD表示某条公路的一段,其中AmB是一段圆弧,AC、BD是线段,且AC、BD分别与圆弧manfen5.com 满分网相切于点A、B,线段AB=180m,∠ABD=150度.
(1)画出圆弧manfen5.com 满分网的圆心O;
(2)求A到B这段弧形公路的长.

manfen5.com 满分网
已知,一个圆形电动砂轮的半径是20cm,转轴OA长是40cm.砂轮未工作时停靠在竖直的档板OM上,边缘与档板相切于点B.现在要用砂轮切割水平放置的薄铁片(铁片厚度忽略不计,ON是切痕所在的直线).
(1)在图②的坐标系中,求点A与点A1的坐标;
(2)求砂轮工作前后,转轴OA旋转的角度和圆心A转过的弧长.
注:图①是未工作时的示意图,图②是工作前后的示意图.

manfen5.com 满分网
如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.
阅读理【解析】

(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;
(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转manfen5.com 满分网周.
实践应用:
(1)在阅读理解的(1)中,若AB=2c,则⊙O自转______周;若AB=l,则⊙O自转______周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转______周;若∠ABC=60°,则⊙O在点B处自转______周;
(2)如图3,∠ABC=90°,AB=BC=manfen5.com 满分网c.⊙O从⊙O1的位置出发,在∠ABC外部沿A-B-C滚动到⊙O4的位置,⊙O自转______周.
拓展联想:
(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;
(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.
manfen5.com 满分网
如图1,在⊙O中,AB为⊙O的直径,AC是弦,OC=4,∠OAC=60度.
(1)求∠AOC的度数;
(2)在图1中,P为直径BA延长线上的一点,当CP与⊙O相切时,求PO的长;
(3)如图2,一动点M从A点出发,在⊙O上按逆时针方向运动,当S△MAO=S△CAO时,求动点M所经过的弧长.
manfen5.com 满分网
在同一平面直角坐标系中有6个点:A(1,1),B(-3,-1),C(-3,1),D(-2,-2),E(-2,-3),F(0,-4).
(1)画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系;
(2)若将直线EF沿y轴向上平移,当它经过点D时,设此时的直线为l1
①判断直线l1与⊙P的位置关系,并说明理由;
②再将直线l1绕点D按顺时针方向旋转,当它经过点C时,设此时的直线为l2.求直线l2与⊙P的劣弧CD围成的图形的面积.(结果保留π)
manfen5.com 满分网
如图,矩形ABCD的边AD、AB分别与⊙O相切于点E、F,manfen5.com 满分网
(1)求manfen5.com 满分网的长;
(2)若manfen5.com 满分网,直线MN分别交射线DA、DC于点M、N,∠DMN=60°,将直线MN沿射线DA方向平移,设点D到直线的距离为d,当时1≤d≤4,请判断直线MN与⊙O的位置关系,并说明理由.

manfen5.com 满分网
manfen5.com 满分网如图,以线段AB为直径的⊙O交线段AC于点E,点M是manfen5.com 满分网的中点,OM交AC于点D,∠BOE=60°,cosC=manfen5.com 满分网,BC=2manfen5.com 满分网
(1)求∠A的度数;
(2)求证:BC是⊙O的切线;
(3)求MD的长度.
“五一”节,小雯和同学一起到游乐场玩大型摩天轮,摩天轮的半径为20m,匀速转动一周需要12min,小雯所坐最底部的车厢(离地面0.5m).
(1)经过2min后小雯到达点Q,如图所示,此时他离地面的高度是多少?
(2)在摩天轮滚动的过程中,小雯将有多长时间连续保持在离地面不低于30.5m的空中?

manfen5.com 满分网
附加题:对于本试卷第19题:“图中△ABC外接圆的圆心坐标是”.请再求:
(1)该圆圆心到弦AC的距离;
(2)以BC为旋转轴,将△ABC旋转一周所得几何体的全面积.(所有表面面积之和)

manfen5.com 满分网
如图,有一块半圆形钢板,直径AB=20cm,计划将此钢板切割成下底为AB的等腰梯形,上底CD的端点在圆周上,且CD=10cm.
(1)求梯形ABCD面积;
(2)求图中阴影部分的面积.

manfen5.com 满分网
问题探究:
(1)如图①所示是一个半径为manfen5.com 满分网,高为4的圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程.(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图①中的矩形ABB′A′,则蚂蚁爬行的最短路程即为线段AB′的长);
(2)如图②所示是一个底面半径为manfen5.com 满分网,母线长为4的圆锥和它的侧面展开图,PA是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程;
(3)如图③所示,在②的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程.
manfen5.com 满分网
问题背景:某课外学习小组在一次学习研讨中,得到了如下两个命题:
manfen5.com 满分网manfen5.com 满分网
①如图1,在正三角形ABC中,M,N分别是AC,AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;
②如图2,在正方形ABCD中,M,N分别是CD,AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
然后运用类比的思想提出了如下命题;
③如图3,在正五边形ABCDE中,M,N分别是CD,DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:
(1)请你从①,②,③三个命题中选择一个进行证明;
(2)请你继续完成下面的探索:
①如图4,在正n(n≥3)边形ABCDEF…中,M,N分别是CD,DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立;(不要求证明)
②如图5,在正五边形ABCDE中,M,N分别是DE,AE上的点,BM与CN相交于点O,若∠BON=108°时,试问结论BM=CN是否还成立.若成立,请给予证明;若不成立,请说明理由.
已知抛物线y=ax2+bx-1经过点A(-1,0)、B(m,0)(m>0),且与y轴交于点C.
(1)求a、b的值(用含m的式子表示);
(2)如图所示,⊙M过A、B、C三点,求阴影部分扇形的面积S(用含m的式子表示);
(3)在x轴上方,若抛物线上存在点P,使得以A、B、P为顶点的三角形与△ABC相似,求m的值.

manfen5.com 满分网
一园林设计师要使用长度为4L的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O为圆心的两个同心圆弧和延长后通过O点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.
(1)求使图1花圃面积为最大时R-r的值及此时花圃面积,manfen5.com 满分网其中R、r分别为大圆和小圆的半径;
(2)若L=160m,r=10m,求使图2面积为最大时的θ值.
如图①、②、③是两个半径都等于2的⊙O1和⊙O2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O1和⊙O2相交于A、B两点,分别连接O1A、O1B、O2A、O2B和AB.
(1)如图②,当∠AO1B=120°时,求两圆重叠部分图形的周长l;
(2)设∠AO1B的度数为x,两圆重叠部分图形的周长为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(3)由(2),若y=2π,则线段O2A所在的直线与⊙O1有何位置关系,为什么?除此之外,它们还有其它的位置关系,写出其它位置关系时x的取值范围.(奖励提示:如果你还能解决下列问题,将酌情另加1~5分,并计入总分.)
在原题的条件下,设∠AO1B的度数为2n,可以发现有些图形的面积S也随∠AO1B变化而变化,试求出其中一个S与n的关系式,并写出n的取值范围.
manfen5.com 满分网
某市为了进一步改善居民的生活环境,园林处决定增加公园A和公园B的绿化面积.已知公园A,B分别有如图1,图2所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮1608m2和1200m2出售,且售价一样.若园林处向甲、乙两地购买草皮,其路程和运费单价见下表:
  公园A 公园B
 路程(千米) 运费单价(元)路程(千米) 运费单价(元) 
甲地  30 0.25 32 0.25
 乙地 22 0.3 30 0.3
(注:运费单价指将每平方米草皮运送1千米所需的人民币)
manfen5.com 满分网
(1)分别求出公园A,B需铺设草坪的面积;(结果精确到1m2
(2)请设计出总运费最省的草皮运送方案,并说明理由.
Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.