某校为了解决学生停车难的问题,打算新建一个自行车车棚,图1是车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图2是车棚顶部的截面示意图,弧AB所在圆的圆心为O,半径OA为3米.
(1)求∠AOB的度数(结果精确到1度);
(2)学校准备用某种材料制作车棚顶部,请你算一算,需该种材料多少平方米?(不考虑接缝等因素,结果精确到1平方米)(参考数据:sin53.1°≈0.80,cos53.1°≈0.60,π取3.14)
manfen5.com 满分网
如图:已知在Rt△ABC中,∠ABC=90°,∠C=60°,边AB=6cm.
(1)求边AC和BC的值;
(2)求以直角边AB所在的直线l为轴旋转一周所得的几何体的侧面积.(结果用含π的代数式表示)

manfen5.com 满分网
(附加题)如图,以O为圆心的两个同心圆中,大圆的直径AD交小圆于M,N两点,大圆的弦AB切小圆于点C,过点C作直线CE⊥AD,垂足为E,交大圆于F,H两点.
(1)试判断线段AC与BC的大小关系,并说明理由;
(2)求证:FC•CH=AE•AO;
(3)若FC,CH是方程x2-2manfen5.com 满分网x+4=0的两根(CH>CF),求图中阴影部分图形的周长.

manfen5.com 满分网
如图,已知:边长为1的圆内接正方形ABCD中,P为边CD的中点,直线AP交圆于E点.
(1)求弦DE的长.
(2)若Q是线段BC上一动点,当BQ长为何值时,三角形ADP与以Q,C,P为顶点的三角形相似?

manfen5.com 满分网
如下示意图,是我市香菇培植场常见的半地下室栽培棚,它由两部分组成,地上部分为半圆柱形四周封闭的塑料薄膜保温棚;地下部分为长方体的培植室,室内长30米,宽1.2米的地面上存放菌棒培育香菇.
(1)地下培植室内按标准排放菌棒,宽排放8袋,长每米排放4排,求能排放多少袋香菇菌棒?
(2)要建这样的保温棚约需多少平方米的塑料薄膜?(不计余料及埋在土里的塑料薄膜,结果精确到0.1平方米)

manfen5.com 满分网
如图1,O为圆柱形木块底面的圆心,过底面的一条弦AD,沿母线AB剖开,得剖面矩形ABCD,AD=24cm,AB=25cm.若manfen5.com 满分网的长为底面周长的manfen5.com 满分网,如图2所示.
(1)求⊙O的半径;
(2)求这个圆柱形木块的表面积.(结果可保留π和根号)

manfen5.com 满分网
下图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥.该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径为6cm,下底面直径为4cm,母线长EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积.(面积计算结果用π表示).

manfen5.com 满分网
如图是某工件的三视图,求此工件的全面积.

manfen5.com 满分网
如图,这是一个由圆柱体材料加工而成的零件,它是以圆柱体的上底面为底面,在其内部“掏取”一个与圆柱体等高的圆锥体而得到的,其底面直径AB=12cm,高BC=8cm,求这个零件的表面积.(结果保留π)

manfen5.com 满分网
如图,圆锥的底面半径r=3cm,高h=4cm.求这个圆锥的表面积.(π取3.14)

manfen5.com 满分网
在一次科学探究实验中,小明将半径为5cm的圆形滤纸片按图1所示的步骤进行折叠,并围成圆锥形.
(1)取一漏斗,上部的圆锥形内壁(忽略漏斗管口处)的母线OB长为6cm,开口圆的直径为6cm.当滤纸片重叠部分三层,且每层为manfen5.com 满分网圆时,滤纸围成的圆锥形放入该漏斗中,能否紧贴此漏斗的内壁(忽略漏斗管口处),请你用所学的数学知识说明;
(2)假设有一特殊规格的漏斗,其母线长为6cm,开口圆的直径为7.2cm,现将同样大小的滤纸围成重叠部分为三层的圆锥形,放入此漏斗中,且能紧贴漏斗内壁.问重叠部分每层的面积为多少?manfen5.com 满分网
如图,不透明圆锥体DEC放在水平面上,在A处灯光照射下形成影子.设BP过底面圆的圆心,已知圆锥体的高为manfen5.com 满分网m,底面半径为2m,BE=4m.
(1)求∠B的度数;
(2)若∠ACP=2∠B,求光源A距水平面的高度.(答案用含根号的式子表示)

manfen5.com 满分网
如图,一个直角三角形两条直角边分别为3cm和4cm,以斜边AB所在直线为轴旋转一周得到一个几何体,在虚线框内画出这个几何体的草图,求这个几何体的表面积.
manfen5.com 满分网
铁匠王老五要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切)请你帮助他算一算可以吗?
(1)请说明方案一不可行的理由;
(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.

manfen5.com 满分网
光明灯具厂生产一批台灯罩,如图的阴影部分为灯罩的侧面展开图.已知半径OA、OC分别为36cm、12cm,∠AOB=135°
(1)若要在灯罩的上下边缘镶上花边(花边的宽度忽略不计),需要多长的花边?
(2)求灯罩的侧面积(接缝不计).(以上计算结果保留π)

manfen5.com 满分网
manfen5.com 满分网如图,一个圆锥的高为manfen5.com 满分网cm,侧面展开图是半圆.求:
(1)圆锥的母线长与底面半径之比;
(2)求∠BAC的度数;
(3)圆锥的侧面积(结果保留π).
将半径为5的圆(如图1)剪去一个圆心角为n°的扇形后围成如图2所示的圆锥,则n的值等于______

manfen5.com 满分网
如图,AB是⊙O的直径,点C是BA延长线上一点,CD切⊙O于D点,弦DE∥CB,Q是AB上一动点,CA=1,CD是⊙O半径的manfen5.com 满分网倍.
(1)求⊙O的半径R;
(2)当Q从A向B运动的过程中,图中阴影部分的面积是否发生变化?若发生变化,请你说明理由;若不发生变化,请你求出阴影部分的面积.

manfen5.com 满分网
如图,在半径是2的⊙O中,点Q为优弧MN的中点,圆心角∠MON=60°,在NQ上有一动点P,且点P到弦MN的距离为x.
(1)求弦MN的长;
(2)试求阴影部分面积y与x的函数关系式,并写出自变量x的取值范围;
(3)试分析比较,当自变量x为何值时,阴影部分面积y与S扇形OMN的大小关系.

manfen5.com 满分网
某工厂中有若干个形状完全相同的直角三角形铁片余料,(如图),已知∠ACB=90°,AC=3,BC=4,现准备对两块铁片余料进行裁剪,方案如下:
方案一:如图1,裁出一个扇形,圆心为点C,并且与AB相切于点D.
方案二:如图2,裁出一个半圆,圆心O在BC上,并且与AB、AC相切于点D、C;
manfen5.com 满分网
(1)分别计算以上两种方案裁剪下来的图形的面积,并把计算结果直接填在横线上.按照方案一裁出的扇形面积是______;按照方案二裁出的半圆的面积是______
(2)写出按照方案二裁出的半圆面积的计算过程.
如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为θ,θ与360°-θ之比为黄金比(“黄金比“近似地等于O.618),AB长为30cm,贴纸部分的宽BD为20cm,求贴纸部分的面积(π取3.14,结果精确到O.1cm2).

manfen5.com 满分网
正方形OCED与扇形OAB有公共顶点0,分别以OA,0B所在直线为x轴,y轴建立平面直角坐标系.如图所示.正方形两个顶点C、D分别在x轴、y轴正半轴上移动.设OC=x,OA=3
(1)当x=1时,正方形与扇形不重合的面积是______;此时直线CD对应的函数关系式是______
(2)当直线CD与扇形OAB相切时.求直线CD对应的函数关系式;
(3)当正方形有顶点恰好落在manfen5.com 满分网上时,求正方形与扇形不重合的面积.

manfen5.com 满分网
如图,已知⊙O的直径AB垂直于弦CD于E,连接AD、BD、OC、OD,且OD=5.
(1)若sin∠BAD=manfen5.com 满分网,求CD的长;
(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留π).

manfen5.com 满分网
如图,点P在圆O外,PA与圆O相切于A点,OP与圆周相交于C点,点B与点A关于manfen5.com 满分网直线PO对称,已知OA=4,PA=manfen5.com 满分网.求:
(1)∠POA的度数;
(2)弦AB的长;
(3)阴影部分的面积.
如图,已知△ABC,AC=BC=6,∠C=90度.O是AB的中点,⊙O与AC相切于点D、与BC相切于点E.设⊙O交OB于F,连DF并延长交CB的延长线于G.
(1)∠BFG与∠BGF是否相等?为什么?
(2)求由DG、GE和弧ED所围成图形的面积.(阴影部分)

manfen5.com 满分网
如图,⊙O是等边三角形ABC的外接圆,已知△ABC的边长为a,求图中阴影部分的面积.

manfen5.com 满分网
如图,已知⊙O的直径AB=8cm,直线DM与⊙O相切于点E,连接BE,过点B作BC⊥DM于点C,BC交⊙O于点F,BC=6cm.
求:
(1)线段BE的长;
(2)图中阴影部分的面积.

manfen5.com 满分网
在学习扇形的面积公式时,同学们推得S扇形=manfen5.com 满分网,并通过比较扇形面积公式与弧长公式l=manfen5.com 满分网,得出扇形面积的另一种计算方法S扇形=manfen5.com 满分网lR.接着老师让同学们解决两个问题:
问题Ⅰ:求弧长为4π,圆心角为120°的扇形面积.
问题Ⅱ:某小区设计的花坛形状如图中的阴影部分,已知AB和CD所在圆心都是点O,弧AB的长为l1,弧CD的长为l2,AC=BD=d,求花坛的面积.
(1)请你解答问题Ⅰ;
(2)在解完问题Ⅱ后的全班交流中,有位同学发现扇形面积公式S扇形=manfen5.com 满分网lR类似于三角形面积公式;类比梯形面积公式,他猜想花坛的面积S=manfen5.com 满分网(l1+l2)d.他的猜想正确吗?如果正确,写出推导过程;如果不正确,请说明理由.

manfen5.com 满分网
某校编排的一个舞蹈需要五把和图1形状大小完全相同的绸扇.学校现有三把符合要求的绸扇,将这三把绸扇完全展开刚好组成图2所示的一朵圆形的花.请你算一算:再做两把这样的绸扇至少需要多少平方厘米的绸布?(单面制作,不考虑绸扇的折皱,结果用含л的式子表示)

manfen5.com 满分网
如图,△ABC中,∠A=90°,BC=2cm,分别以点B、C为圆心的两个等圆相外切,求两个图中两个阴影扇形的面积之和.

manfen5.com 满分网
Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.