相关试题
当前位置:首页 > 高中数学试题
已知函数manfen5.com 满分网,其中a>0.
(1)若2f(1)=f(-1),求a的值;
(2)当a≥1时,判断函数f(x)在区间[0,+∞)上的单调性;
(3)若函数f(x)在区间[1,+∞)上是增函数,求a的取值范围.
△ABC中,三个内角A、B、C所对的边分别为a、b、c,若B=60°,a=(manfen5.com 满分网-1)c.
(1)求角A的大小;
(2)已知当x∈[manfen5.com 满分网manfen5.com 满分网]时,函数f(x)=cos2x+asinx的最大值为3,求△ABC的面积.
如图:三棱锥P-ABC中,PA⊥底面ABC,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为manfen5.com 满分网.若M是BC的中点,求:
(1)三棱锥P-ABC的体积;
(2)异面直线PM与AC所成角的大小(结果用反三角函数值表示).

manfen5.com 满分网
若集合A={x|loga(x2-x-2)>2,a>0且a≠1}.
(1)若a=2,求集合A;
(2)若manfen5.com 满分网,求a的取值范围.
直角△POB中,∠PBO=90°,以O为圆心、OB为半径作圆弧交OP于A点.若弧AB等分△POB的面积,且∠AOB=α弧度,则 ( )
manfen5.com 满分网
A.tanα=α
B.tanα=2α
C.sinα=2cosα
D.2sinα=cosα
manfen5.com 满分网”是“对任意的正数x,均有manfen5.com 满分网”的( )
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分也非必要条件
从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有( )
A.140种
B.120种
C.35种
D.34种
集合A={y|y=x2,x∈R},B={-2,-1,1,2},则下列结论正确的是 …( )
A.A∪B=(0,+∞)
B.(CRA)∪B=(-∞,0]
C.A∩CRB=[0,+∞)
D.(CRA)∩B={-2,-1}
研究问题:“已知关于x的不等式ax2-bx+c>0的解集为(1,2),解关于x的不等式cx2-bx+a>0”,有如下解法:
【解析】
由ax2-bx+c>0⇒manfen5.com 满分网,令manfen5.com 满分网,则manfen5.com 满分网
所以不等式cx2-bx+a>0的解集为manfen5.com 满分网
参考上述解法,已知关于x的不等式manfen5.com 满分网的解集为(-2,-1)∪(2,3),求关于x的不等式manfen5.com 满分网的解集.
对于函数f(x)=mx-|x+1|(x∈[-2,+∞)),若存在闭区间[a,b][-2,+∞)(a<b),使得对任意x∈[a,b],恒有f(x)=c(c为实常数),则实数m=   
共1028964条记录 当前(82640/102897) 首页 上一页 82635 82636 82637 82638 82639 82640 82641 82642 82643 82644 82645 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.