相关试题
当前位置:首页 > 高中数学试题
某企业准备在2006年对员工增加奖金200元,其中有120元是基本奖金.预计在今后的若干年内,该企业每年新增加的奖金平均比上一年增长8%.另外,每年新增加的奖金中,基本奖金均比上一年增加30元.那么,到哪一年底,
(1)该企业历年所增加的奖金中基本奖金累计(以2006年为累计的第一年)将首次不少于750元?
(2)当年增加的基本奖金占该年增加奖金的比例首次大于85%?
已知不等式x2-3x+t<0的解集为{x|1<x<m,x∈R}
(1)求t,m的值;
(2)若函数f(x)=-x2+ax+4在区间(-∞,1]上递增,求关于x的不等式loga(-mx2+3x+2-t)<0的解集.
在复数范围内解方程manfen5.com 满分网(i为虚数单位).
过定点A(-1,1)是否存在直线l,使得点A恰为直线l与椭圆x2+3y2=9相交所得的线段的中点,若存在,请求出直线l的方程;若不存在,请说明理由.
设非零实常数a、b、c满足a、b同号,b、c异号,则关于x的方程a.4x+b.2x+c=0( )
A.无实根
B.有两个共轭的虚根
C.有两个异号的实根
D.仅有一个实根
设x=sinα,且α∈manfen5.com 满分网,则arccosx的取值范围是( )
A.[0,π]
B.[manfen5.com 满分网manfen5.com 满分网]
C.[0,manfen5.com 满分网]
D.[manfen5.com 满分网,π]
在直角坐标平面中,若F1、F2为定点,P为动点,a>0为常数,则“|PF1|+|PF2|=2a”是“点P的轨迹是以F1、F2为焦点,以2a为长轴的椭圆”的( )
A.充要条件
B.仅必要条件
C.仅充分条件
D.非充分且非必要条件
已知数列{an}的通项公式是an=2n-49 (n∈N),那么数列{an}的前n项和Sn 达到最小值时的n的值是( )
A.23
B.24
C.25
D.26
对于集合N={1,2,3,…,n}的每一个非空子集,定义一个“交替和”如下:按照递减的次序重新排列该子集,然后从最大数开始交替地减、加后继的数.例如集合{1,2,4,6,9}的交替和是9-6+4-2+1=6,集合{5}的交替和为5.当集合N中的n=2时,集合N={1,2}的所有非空子集为{1},{2},{1,2},则它的“交替和”的总和S2=1+2+(2-1)=4,请你尝试对n=3、n=4的情况,计算它的“交替和”的总和S3、S4,并根据其结果猜测集合N={1,2,3,…,n}的每一个非空子集的“交替和”的总和Sn=   
F1、F2是双曲线manfen5.com 满分网的焦点,点P在双曲线上,若点P到焦点F1的距离等于9,则点P到焦点F2的距离等于   
共1028964条记录 当前(82573/102897) 首页 上一页 82568 82569 82570 82571 82572 82573 82574 82575 82576 82577 82578 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.