设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是( ) A.1 B.3 C.4 D.8 |
|
已知双曲线C:![]() ![]() (1)求双曲线C的方程; (2)过点A(0,1)的直线l与双曲线C的右支交于不同两点P、Q,且P在A、Q之间,若 ![]() ![]() |
|
已知函数f(x)=ln(3-x)+ax+1. (1)若函数f(x)在[0,2]上是单调递增函数,求实数a的取值范围; (2)求函数f(x)在[0,2]上的最大值. |
|
数列{an}的首项为![]() (1)求证: ![]() (2)求{an}的通项公式; (3)记Sn为{an}的前n项和,对一切n∈N+,不等式2Sn-n-2λ≥0恒成立,求λ的取值范围. |
|
![]() (1)求证:平面AEC⊥平面PDB; (2)当 ![]() |
|
袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取4个球. (1)求得分X的概率分布列; (2)求得分大于6分的概率. |
|
已知函数![]() (Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程; (Ⅱ)求函数f(x)在区间 ![]() |
|
(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分) A.(不等式选做题)不等式 ![]() B.(几何证明选做题) 如图,以AB=4为直径的圆与△ABC的两边分别交于E,F两点,∠ACB=60°,则EF= . C.(坐标系与参数方程选做题) 在极坐标中,已知点P为方程ρ(cosθ+sinθ)=1所表示的曲线上一动点,Q(2, ![]() ![]() |
|
直三棱柱ABC-A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于 . | |
先后抛掷两枚均匀的骰子,骰子朝上的点数分别为m,n,则满足log2mn=1的概率是 . | |