下列运算正确的是( ) A. a3﹣a2=a B. a2•a3=a6 C. a6÷a2=a3 D. (a2)3=a6
|
|
下列说法正确的是( ) A. 符号相反的两个数是相反数 B. 任何一个负数都小于它的相反数 C. 任何一个负数都大于它的相反数 D. 0没有相反数
|
|
设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”. (1)反比例函数y= (2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值; (3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当△ABC为直角三角形时,写出点B的坐标.
|
|
如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上. (1)如图1,当点E在边BC上时,求证DE=EB; (2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明; (3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.
|
|
阅读下面材料: 已知:如图,在正方形ABCD中,边AB=a1. 按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.
请解决以下问题: (1)完成表格中的填空: ① ;② ;③ ;④ ; (2)根据以上第三步、第四步的作法画出第三个正方形CHIJ(不要求尺规作图).
|
|||||||||||||||||
A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系. (1)L1表示哪辆汽车到甲地的距离与行驶时间的关系? (2)汽车B的速度是多少? (3)求L1,L2分别表示的两辆汽车的s与t的关系式. (4)2小时后,两车相距多少千米? (5)行驶多长时间后,A、B两车相遇?
|
|
某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:
请根据上图完成下面题目: (1)总人数为 人,a= ,b= . (2)请你补全条形统计图. (3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?
|
||||||||||||||||
如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC.
|
|
如图,在平行四边形ABCD中,E、F为对角线BD上的三等分点.求证:四边形AFCE是平行四边形.
|
|
目前节能灯在城市已基本普及,为响应号召,某商场计划用3800元购进甲,乙两种节能灯共120只,这两种节能灯的进价、售价如下表:
(1)求甲、乙两种节能灯各进多少只? (2)全部售完120只节能灯后,该商场获利多少元?
|
||||||||||